FCVerbose
FCVerbose
is an option for numerous functions that allows to specify a local value of $VeryVerbose
inside those functions. When set to a positive integer, all the debugging information inside the function will be given according to the value of FCVerbose
, while the debugging output of other functions will be still governed by the value of $VeryVerbose
. Following values are common
1
- a brief description of the calculational steps including timings
2
- somewhat more debugging information
3
- lots of debugging output, probably useful only for developers
See also
Overview, $VeryVerbose.
Examples
DiracSimplify[GA[\[Mu], \[Nu], \[Rho], \[Mu], \[Nu]], FCVerbose -> 1]
DiracSimplify: Entering.
DiracSimplify: Normal mode.
DiracSimplify: Extracting Dirac objects.
DiracSimplify: Done extracting Dirac objects, timing: 0.03636
DiracSimplify: Doing index contractions.
DiracSimplify: Index contractions done, timing: 0.000453
DiracSimplify: Applying diracSimplifyEval
DiracSimplify: diracSimplifyEval done, timing: 0.01655
DiracSimplify: Inserting Dirac objects back into products.
DiracSimplify: Done inserting Dirac objects back into products, timing: 0.000132
DiracSimplify: Applying SpinorChainTrick.
DiracSimplify: Done applying SpinorChainTrick, timing: 0.001167
DiracSimplify: Creating the final replacement rule.
DiracSimplify: Final replacement rule done, timing: 0.000119
DiracSimplify: Expanding the result.
DiracSimplify: Expanding done, timing: 0.000413
DiracSimplify: Leaving.
DiracSimplify: Total timing: 0.06579
4γˉρ
DiracSimplify[GA[\[Mu], \[Nu], \[Rho], \[Mu], \[Nu]], FCVerbose -> 2]
DiracSimplify: Entering.
DiracSimplify: Normal mode.
DiracSimplify: Extracting Dirac objects.
DiracSimplify: Done extracting Dirac objects, timing: 0.008883
DiracSimplify: Doing index contractions.
DiracSimplify: Index contractions done, timing: 0.000426
DiracSimplify: Applying diracSimplifyEval
DiracSimplify: diracSimplifyEval: Entering
DiracSimplify: diracSimplifyEval: Applying DiracTrick.
DiracSimplify: diracSimplifyEval: DiracTrick done, timing: 0.003183
DiracSimplify: diracSimplifyEval: Applying Dotsimplify.
DiracSimplify: diracSimplifyEval: Dotsimplify done, timing: 0.002288
DiracSimplify: diracSimplifyEval: Applying DiracTrick.
DiracSimplify: diracSimplifyEval: DiracTrick done, timing: 0.006512
DiracSimplify: diracSimplifyEval: Applying Dotsimplify.
DiracSimplify: diracSimplifyEval: Dotsimplify done, timing: 0.002125
DiracSimplify: diracSimplifyEval done, timing: 0.01820
DiracSimplify: Inserting Dirac objects back into products.
DiracSimplify: Done inserting Dirac objects back into products, timing: 0.000146
DiracSimplify: Applying SpinorChainTrick.
DiracSimplify: Done applying SpinorChainTrick, timing: 0.001152
DiracSimplify: Creating the final replacement rule.
DiracSimplify: Final replacement rule done, timing: 0.000123
DiracSimplify: Expanding the result.
DiracSimplify: Expanding done, timing: 0.000374
DiracSimplify: Leaving.
DiracSimplify: Total timing: 0.03523
4γˉρ
DiracSimplify[GA[\[Mu], \[Nu], \[Rho], \[Mu], \[Nu]], FCVerbose -> 3]
DiracSimplify: Entering.
DiracSimplify: Entering with γˉμ.γˉν.γˉρ.γˉμ.γˉν
DiracSimplify: Normal mode.
DiracSimplify: Extracting Dirac objects.
DiracSimplify: dsPart: FeynCalcˋDiracSimplifyˋPrivateˋdsHeadAll(FeynCalcˋDiracSimplifyˋPrivateˋdsHead(γˉμ.γˉν.γˉρ.γˉμ.γˉν))
DiracSimplify: freePart: 0
DiracSimplify: Done extracting Dirac objects, timing: 0.009456
DiracSimplify: diracObjects: {FeynCalcˋDiracSimplifyˋPrivateˋdsHead(γˉμ.γˉν.γˉρ.γˉμ.γˉν)}
DiracSimplify: Doing index contractions.
DiracSimplify: Index contractions done, timing: 0.000418
DiracSimplify: diracObjectsEval after index contractions: {FeynCalcˋDiracSimplifyˋPrivateˋdsHead(γˉμ.γˉν.γˉρ.γˉμ.γˉν)}
DiracSimplify: Applying diracSimplifyEval
DiracSimplify: diracSimplifyEval: Entering
DiracSimplify: diracSimplifyEval: Entering with: γˉμ.γˉν.γˉρ.γˉμ.γˉν
DiracSimplify: diracSimplifyEval: Applying DiracTrick.
DiracSimplify: diracSimplifyEval: DiracTrick done, timing: 0.002919
DiracSimplify: diracSimplifyEval: After DiracTrick: 4γˉρ
DiracSimplify: diracSimplifyEval: Applying Dotsimplify.
DiracSimplify: diracSimplifyEval: Dotsimplify done, timing: 0.002082
DiracSimplify: diracSimplifyEval: After Dotsimplify: 4γˉρ
DiracSimplify: diracSimplifyEval: Applying DiracTrick.
DiracSimplify: diracSimplifyEval: DiracTrick done, timing: 0.006242
DiracSimplify: diracSimplifyEval: After DiracTrick: 4γˉρ
DiracSimplify: diracSimplifyEval: Applying Dotsimplify.
DiracSimplify: diracSimplifyEval: Dotsimplify done, timing: 0.002124
DiracSimplify: diracSimplifyEval: After Dotsimplify: 4γˉρ
DiracSimplify: diracSimplifyEval: Leaving with: 4γˉρ
DiracSimplify: After diracSimplifyEval: {4γˉρ}
DiracSimplify: diracSimplifyEval done, timing: 0.02049
DiracSimplify: Inserting Dirac objects back into products.
DiracSimplify: repRule: {FeynCalcˋDiracSimplifyˋPrivateˋdsHead(γˉμ.γˉν.γˉρ.γˉμ.γˉν)→4γˉρ}
DiracSimplify: Done inserting Dirac objects back into products, timing: 0.001005
DiracSimplify: Intermediate result: {4γˉρ}
DiracSimplify: Applying SpinorChainTrick.
DiracSimplify: Done applying SpinorChainTrick, timing: 0.001158
DiracSimplify: After SpinorChainTrick: {4γˉρ}
DiracSimplify: Creating the final replacement rule.
DiracSimplify: repRule: {FeynCalcˋDiracSimplifyˋPrivateˋdsHeadAll(FeynCalcˋDiracSimplifyˋPrivateˋdsHead(γˉμ.γˉν.γˉρ.γˉμ.γˉν))→4γˉρ}
DiracSimplify: Final replacement rule done, timing: 0.000980
DiracSimplify: Expanding the result.
DiracSimplify: Expanding done, timing: 0.000399
DiracSimplify: After expanding: 4γˉρ
DiracSimplify: Leaving.
DiracSimplify: Total timing: 0.04359
DiracSimplify: Leaving with 4γˉρ
4γˉρ