FCRerouteMomenta[exp, {p1, p2, ...}, {k1, k2, ...}]
changes the routing of the momenta by exploiting the 4-momentum conservation law p_1+p_2+ \ldots = k_1+k_2+ \ldots.
The main aim of this function is to simplify the input expression by replacing simple linear combinations of the external momenta with shorter expressions.
For example, in a process a(p_1) + b(p_2) -> c(k_1)+ d(k_2)+ e(k_3), the combination k_1+k_2-p_2 can be replaced with the shorter expression p_1-k_3.
The replacements are applied using the FeynCalcExternal
form of the expression. Ideally, this function should be used directly on the output of a diagram generator such as FeynArts or QGRAF.
Reroute momenta according to the momentum conservation relation l_1+l_2=p_1+p_2+k_p.
exp = (-I)*Spinor[-Momentum[l2], ME, 1] . GA[\[Mu]] . Spinor[Momentum[l1], ME,
1]*Spinor[Momentum[p1], SMP["m_Q"], 1] . GS[Polarization[kp, -I,
-> True]] . (GS[kp + p1] + SMP["m_Q"]) . GA[\[Mu]] . Spinor[-Momentum[p2],
Transversality ["m_Q"], 1]*FAD[kp + p1 + p2, Dimension -> 4]*FAD[{-l1 - l2 - p2, SMP["m_Q"]},
SMP-> 4]*SDF[cq, cqbar]*SMP["e"]^3*SMP["Q_u"]^2 Dimension
-\frac{i \;\text{e}^3 Q_u^2 \delta _{\text{cq}\;\text{cqbar}} \left(\varphi (-\overline{\text{l2}},\text{ME})\right).\bar{\gamma }^{\mu }.\left(\varphi (\overline{\text{l1}},\text{ME})\right) \left(\varphi (\overline{\text{p1}},m_Q)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{kp})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{kp}}+\overline{\text{p1}}\right)+m_Q\right).\bar{\gamma }^{\mu }.\left(\varphi (-\overline{\text{p2}},m_Q)\right)}{(\overline{\text{kp}}+\overline{\text{p1}}+\overline{\text{p2}})^2 \left((-\overline{\text{l1}}-\overline{\text{l2}}-\overline{\text{p2}})^2-m_Q^2\right)}
[exp, {l1, l2}, {p1, p2, kp}] FCRerouteMomenta
-\frac{i \;\text{e}^3 Q_u^2 \delta _{\text{cq}\;\text{cqbar}} \left(\varphi (-\overline{\text{l2}},\text{ME})\right).\bar{\gamma }^{\mu }.\left(\varphi (\overline{\text{l1}},\text{ME})\right) \left(\varphi (\overline{\text{p1}},m_Q)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{kp})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{kp}}+\overline{\text{p1}}\right)+m_Q\right).\bar{\gamma }^{\mu }.\left(\varphi (-\overline{\text{p2}},m_Q)\right)}{(\overline{\text{l1}}+\overline{\text{l2}})^2 \left((-\overline{\text{l1}}-\overline{\text{l2}}-\overline{\text{p2}})^2-m_Q^2\right)}