FCLoopValidTopologyQ
FCLoopValidTopologyQ[topo]
returns True
if topo
is a valid FCTopology
object or a list thereof.
See also
Overview, FCTopology.
Examples
This is a valid topology: it has an id, a list of propagators, a list of loop and external momenta, a list of possible substitutions for kinematic invariants and an empty list reserved for future applications
{FAD[p1], FAD[p2], FAD[p3], FAD[Q - p1 - p2 - p3], FAD[Q - p1 - p2], FAD[Q - p1], FAD[Q - p2], FAD[p1 + p3]}
{p121,p221,p321,(−p1−p2−p3+Q)21,(−p1−p2+Q)21,(Q−p1)21,(Q−p2)21,(p1+p3)21}
topo = FCTopology[topo1, {FAD[p1], FAD[p2], FAD[p3], FAD[Q - p1 - p2 - p3], FAD[Q - p1 - p2],
FAD[Q - p1], FAD[Q - p2], FAD[p1 + p3]}, {p1, p2, p3}, {Q}, {}, {}]
FCTopology(topo1,{p121,p221,p321,(−p1−p2−p3+Q)21,(−p1−p2+Q)21,(Q−p1)21,(Q−p2)21,(p1+p3)21},{p1,p2,p3},{Q},{},{})
FCLoopValidTopologyQ[topo]
True
This topology is missing information about loop and external momenta
topoWrong = FCTopology[topo1, {FAD[p1], FAD[p2], FAD[Q - p1 - p2 - p3], FAD[Q - p1 - p2],
FAD[Q - p1], FAD[p1 + p3]}, {}, {}]
FCTopology(topo1,{p121,p221,(−p1−p2−p3+Q)21,(−p1−p2+Q)21,(Q−p1)21,(p1+p3)21},{},{})
FCLoopValidTopologyQ[topoWrong]
![074ejzubvewb2](img/074ejzubvewb2.svg)
False