FCLoopIntegralToPropagators[int, {q1, q2, ...}] is an
auxiliary function that converts the loop integral int that
depends on the loop momenta q1, q2, ... to a list of
propagators and scalar products.
All propagators and scalar products that do not depend on the loop
momenta are discarded, unless the Rest option is set to
True.
Overview, FCLoopPropagatorsToTopology
SFAD[p1]
FCLoopIntegralToPropagators[%, {p1}]\frac{1}{(\text{p1}^2+i \eta )}
\left\{\frac{1}{(\text{p1}^2+i \eta )}\right\}
SFAD[p1, p2]
FCLoopIntegralToPropagators[%, {p1, p2}]\frac{1}{(\text{p1}^2+i \eta ).(\text{p2}^2+i \eta )}
\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )}\right\}
If the integral contains propagators raised to integer powers, only one propagator will appear in the output.
int = SPD[q, p] SFAD[q, q - p, q - p]\frac{p\cdot q}{(q^2+i \eta ).((q-p)^2+i \eta )^2}
FCLoopIntegralToPropagators[int, {q}]\left\{(p\cdot q+i \eta ),\frac{1}{(q^2+i \eta )},\frac{1}{((q-p)^2+i \eta )}\right\}
However, setting the option Tally to True
will count the powers of the appearing propagators.
FCLoopIntegralToPropagators[int, {q}, Tally -> True]\left( \begin{array}{cc} \frac{1}{(q^2+i \eta )} & 1 \\ (p\cdot q+i \eta ) & 1 \\ \frac{1}{((q-p)^2+i \eta )} & 2 \\ \end{array} \right)
Here is a more realistic 3-loop example
int = SFAD[{{-k1, 0}, {mc^2, 1}, 1}] SFAD[{{-k1 - k2, 0}, {mc^2, 1}, 1}] SFAD[{{-k2, 0}, {0, 1}, 1}] SFAD[{{-k2, 0}, {0, 1}, 2}] SFAD[{{-k3, 0}, {mc^2, 1}, 1}] *SFAD[{{k1 - k3 - p1, 0}, {0, 1}, 1}] SFAD[{{-k1 - k2 + k3 + p1, 0}, {0, 1}, 1}] SFAD[{{-k1 - k2 + k3 + p1, 0}, {0, 1}, 2}]\frac{1}{(\text{k2}^2+i \eta )^3 (\text{k1}^2-\text{mc}^2+i \eta ) (\text{k3}^2-\text{mc}^2+i \eta ) ((-\text{k1}-\text{k2})^2-\text{mc}^2+i \eta ) ((\text{k1}-\text{k3}-\text{p1})^2+i \eta ) ((-\text{k1}-\text{k2}+\text{k3}+\text{p1})^2+i \eta )^3}
FCLoopIntegralToPropagators[int, {k1, k2, k3}, Tally -> True]\left( \begin{array}{cc} \frac{1}{(\text{k2}^2+i \eta )} & 3 \\ \frac{1}{(\text{k3}^2-\text{mc}^2+i \eta )} & 1 \\ \frac{1}{(\text{k1}^2-\text{mc}^2+i \eta )} & 1 \\ \frac{1}{((\text{k1}-\text{k3}-\text{p1})^2+i \eta )} & 1 \\ \frac{1}{((-\text{k1}-\text{k2}+\text{k3}+\text{p1})^2+i \eta )} & 3 \\ \frac{1}{((-\text{k1}-\text{k2})^2-\text{mc}^2+i \eta )} & 1 \\ \end{array} \right)