FeynCalc manual (development version)

 

FCLoopGraphPlot

FCLoopGraphPlot[{edges, labels}] visualizes the graph of the given loop integral using the provided list of edges, styles and labels using the built-in function Graph. The Option Graph can be used to pass options to the Graph objects.

By default, FCLoopGraphPlot returns a Graph. When using Mathematica 12.2 or newer, it is also possible to return a Graphics object created by GraphPlot. For this the option GraphPlot must be set to a list of options that will be passed to GraphPlot. An empty list is also admissible. For example, FCLoopGraphPlot[int, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}].

Given a list of Graph or Graphics objects created by FCLoopGraphPlot, a nice way to get a better overview is to employ Magnify[Grid[(Partition[out, UpTo[4]])], 0.9].

Notice that older Mathematica versions have numerous shortcomings in the graph drawing capabilities that cannot be reliably worked around. This why to use FCLoopGraphPlot you need to have at least Mathematica 11.0 or newer. For best results we recommend using Mathematica 12.2 or newer.

See also

Overview, FCLoopIntegralToGraph.

Examples

Showcases

1-loop tadpole

FCLoopIntegralToGraph[FAD[{p, m}], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{1\to 1\},\left( \begin{array}{ccc} p & 1 & -m^2 \\ \end{array} \right),\left\{\frac{1}{(p^2-m^2+i \eta )}\right\},1\right\}

17vbh4fnbai7p

1-loop massless bubble

FCLoopIntegralToGraph[FAD[p, p - q], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2\},\{-q,q,\{p,1,0\},\{p-q,1,0\}\},\left\{0,0,\frac{1}{(p^2+i \eta )},\frac{1}{((p-q)^2+i \eta )}\right\},1\right\}

0l6c2ciizqzvx

1-loop massive bubble

FCLoopIntegralToGraph[FAD[{p, m1}, {p - q, m2}], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2\},\left\{-q,q,\left\{p,1,-\text{m1}^2\right\},\left\{p-q,1,-\text{m2}^2\right\}\right\},\left\{0,0,\frac{1}{(p^2-\text{m1}^2+i \eta )},\frac{1}{((p-q)^2-\text{m2}^2+i \eta )}\right\},1\right\}

0x6jroffsp4jx

1-loop massless triangle

FCLoopIntegralToGraph[FAD[p, p + q1, p + q1 + q2], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 3,-2\to 1,-1\to 2,1\to 2,1\to 3,2\to 3\},\{\text{q1}+\text{q2},\text{q2},\text{q1},\{p+\text{q1},1,0\},\{p+\text{q1}+\text{q2},1,0\},\{p,1,0\}\},\left\{0,0,0,\frac{1}{(p^2+i \eta )},\frac{1}{((p+\text{q1})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2})^2+i \eta )}\right\},1\right\}

1jp0um4afemua

1-loop massless box

FCLoopIntegralToGraph[FAD[p, p + q1, p + q1 + q2, p + q1 + q2 + q3], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{-4\to 4,-3\to 1,-2\to 2,-1\to 3,1\to 2,1\to 4,2\to 3,3\to 4\},\{\text{q1}+\text{q2}+\text{q3},\text{q3},\text{q2},\text{q1},\{p+\text{q1}+\text{q2},1,0\},\{p+\text{q1}+\text{q2}+\text{q3},1,0\},\{p+\text{q1},1,0\},\{p,1,0\}\},\left\{0,0,0,0,\frac{1}{(p^2+i \eta )},\frac{1}{((p+\text{q1})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2}+\text{q3})^2+i \eta )}\right\},1\right\}

1x2rfo5q5c9ih

1-loop massless pentagon

FCLoopIntegralToGraph[FAD[p, p + q1, p + q1 + q2, p + q1 + q2 + q3, p + q1 + q2 + q3 + q4], {p}] 
 
FCLoopGraphPlot[%]

\left\{\{-5\to 5,-4\to 1,-3\to 2,-2\to 3,-1\to 4,1\to 2,1\to 5,2\to 3,3\to 4,4\to 5\},\{\text{q1}+\text{q2}+\text{q3}+\text{q4},\text{q4},\text{q3},\text{q2},\text{q1},\{p+\text{q1}+\text{q2}+\text{q3},1,0\},\{p+\text{q1}+\text{q2}+\text{q3}+\text{q4},1,0\},\{p+\text{q1}+\text{q2},1,0\},\{p+\text{q1},1,0\},\{p,1,0\}\},\left\{0,0,0,0,0,\frac{1}{(p^2+i \eta )},\frac{1}{((p+\text{q1})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2}+\text{q3})^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2}+\text{q3}+\text{q4})^2+i \eta )}\right\},1\right\}

1ursotjug53dt

2-loop massless self-energy

FCLoopIntegralToGraph[FAD[p1, p2, Q - p1 - p2, Q - p1, Q - p2], {p1, p2}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 3,1\to 4,2\to 3,2\to 4,3\to 4\},\{-Q,Q,\{\text{p2},1,0\},\{Q-\text{p2},1,0\},\{Q-\text{p1},1,0\},\{\text{p1},1,0\},\{-\text{p1}-\text{p2}+Q,1,0\}\},\left\{0,0,\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )}\right\},1\right\}

1oop4iid3t4s1

Same topology as before but now fully massive and with some dots

FCLoopIntegralToGraph[FAD[{p1, m}, {p2, m2}, {Q - p1 - p2, m}, {Q - p1, m, 2}, {Q - p2, m,2}], {p1, p2}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 3,1\to 4,2\to 3,2\to 4,3\to 4\},\left\{-Q,Q,\left\{\text{p2},1,-\text{m2}^2\right\},\left\{Q-\text{p2},2,-m^2\right\},\left\{Q-\text{p1},2,-m^2\right\},\left\{\text{p1},1,-m^2\right\},\left\{-\text{p1}-\text{p2}+Q,1,-m^2\right\}\right\},\left\{0,0,\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{((Q-\text{p2})^2-m^2+i \eta )},\frac{1}{((Q-\text{p1})^2-m^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2-m^2+i \eta )}\right\},1\right\}

1tcohebgvnxj5

3-loop massless self-energy

FCLoopIntegralToGraph[FAD[p1, p2, p3, Q - p1 - p2 - p3, Q - p1 - p2, Q - p1, Q - p2, p1 + p3], {p1, p2, p3}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 5,1\to 6,2\to 3,2\to 5,3\to 4,3\to 6,4\to 5,4\to 6\},\{-Q,Q,\{\text{p2},1,0\},\{Q-\text{p2},1,0\},\{\text{p1},1,0\},\{Q-\text{p1},1,0\},\{\text{p3},1,0\},\{\text{p1}+\text{p3},1,0\},\{-\text{p1}-\text{p2}+Q,1,0\},\{-\text{p1}-\text{p2}-\text{p3}+Q,1,0\}\},\left\{0,0,\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p1}+\text{p3})^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}-\text{p3}+Q)^2+i \eta )}\right\},1\right\}

0h5tic9nxwh1v

3-loop self-energy with two massive lines

FCLoopIntegralToGraph[Times @@ {SFAD[{{p1, 0}, {m^2, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}], 
     SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}], 
     SFAD[{{p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 - Q, 0}, {m^2, 1}, 1}],SFAD[{{p2 + p3 - Q, 0}, {0, 1}, 1}]}, 
   {p1, p2, p3}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 3,1\to 4,2\to 5,2\to 6,3\to 4,3\to 5,4\to 6,5\to 6\},\left\{-Q,Q,\{\text{p2},1,0\},\{\text{p2}-Q,1,0\},\left\{\text{p1}-Q,1,-m^2\right\},\left\{\text{p1},1,-m^2\right\},\{\text{p3},1,0\},\{\text{p2}+\text{p3},1,0\},\{\text{p2}+\text{p3}-Q,1,0\},\{\text{p1}+\text{p2}+\text{p3}-Q,1,0\}\right\},\left\{0,0,\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2-m^2+i \eta )}\right\},1\right\}

07ug1r8wo00tz

2-loop triangle

FCLoopIntegralToGraph[FAD[p1, p2, Q1 + p1, Q2 - p1, Q1 + p1 + p2, Q2 - p1 - p2], {p1, p2}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 3,-2\to 1,-1\to 2,1\to 2,1\to 5,2\to 4,3\to 4,3\to 5,4\to 5\},\{\text{Q1}+\text{Q2},\text{Q2},\text{Q1},\{\text{p1},1,0\},\{\text{Q2}-\text{p1},1,0\},\{\text{p1}+\text{Q1},1,0\},\{\text{p1}+\text{p2}+\text{Q1},1,0\},\{-\text{p1}-\text{p2}+\text{Q2},1,0\},\{\text{p2},1,0\}\},\left\{0,0,0,\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},1\right\}

128eenfkkx168

Special cases

Not all loop integrals admit a graph representation. Furthermore, an integral may have a weird momentum routing that cannot be automatically recognized by the employed algorithm. Consider e.g.

topo = FCTopology[TRIX1, {SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1 + Q1, 0}, {0, 1}, 1}], 
    SFAD[{{p1 + p2 + Q1, 0}, {0, 1}, 1}], SFAD[{{-p1 + Q2, 0}, {0, 1}, 1}], 
    SFAD[{{-p1 - p2 + Q2, 0}, {0, 1}, 1}]}, {p1, p2}, {Q1, Q2}, {}, {}]

\text{FCTopology}\left(\text{TRIX1},\left\{\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{\text{Q1},\text{Q2}\},\{\},\{\}\right)

Here FCLoopIntegralToGraph has no way to know that the actual momentum is Q1+Q2, i.e. it is a 2- and not 3-point function

FCLoopIntegralToGraph[topo]

11zrqyeu1me9r

\text{False}

However, if we explicitly provide this information, in many cases the function can still perform the proper reconstruction

FCLoopIntegralToGraph[topo, Momentum -> {Q1 + Q2}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 3,1\to 4,2\to 3,2\to 4,3\to 4\},\{-\text{Q1}-\text{Q2},\text{Q1}+\text{Q2},\{\text{p1}+\text{Q1},1,0\},\{\text{Q2}-\text{p1},1,0\},\{\text{p1}+\text{p2}+\text{Q1},1,0\},\{-\text{p1}-\text{p2}+\text{Q2},1,0\},\{\text{p2},1,0\}\},\left\{0,0,\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},1\right\}

0uie34cszj25t

And here is another example. This NRQCD integral from arXiv:1907.08227 looks like as if it has only one external momentum flowing in

FCLoopIntegralToGraph[FAD[{k, m}, l + p, l - p, k + l], {k, l}]

0f1bipa98qh74

\text{False}

while in reality there are two of them: p and 2p

FCLoopIntegralToGraph[FAD[{k, m}, l + p, l - p, k + l], {k, l}, 
   Momentum -> {2 p, p}, FCE -> True] 
 
FCLoopGraphPlot[%]

\left\{\{-4\to 3,-2\to 2,-1\to 1,1\to 2,1\to 3,2\to 3,2\to 3\},\left\{p,p,2 p,\{l+p,1,0\},\{l-p,1,0\},\{k+l,1,0\},\left\{k,1,-m^2\right\}\right\},\left\{0,0,0,\frac{1}{((l+p)^2+i \eta )},\frac{1}{((k+l)^2+i \eta )},\frac{1}{((l-p)^2+i \eta )},\frac{1}{(k^2-m^2+i \eta )}\right\},1\right\}

141t4dbpsuxrz

In this case the correct form of the external momentum can be deduced upon performing some elementary shifts. The direct application of the function fails

ex = FCTopology[topo1X12679, {SFAD[{{p1, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}], 
    SFAD[{{p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}]

\text{FCTopology}\left(\text{topo1X12679},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)

FCLoopIntegralToGraph[ex]

1u54vfjptyg1s

\text{False}

Yet let us consider

exShifted = FCReplaceMomenta[ex, {p2 -> p2 - p3 + p1 - Q, p3 -> p3 - p1 + Q}]

\text{FCTopology}\left(\text{topo1X12679},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}-\text{p3}-2 Q)^2+i \eta )},\frac{1}{(\text{p3}^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)

Now we immediately see that the proper external momentum to consider is 2Q instead of just Q

FCLoopIntegralToGraph[exShifted, Momentum -> {2 Q}] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2,1\to 2,1\to 2\},\{-2 Q,2 Q,\{\text{p1},1,0\},\{\text{p2},1,0\},\{\text{p1}+\text{p2}-\text{p3}-2 Q,1,0\},\{\text{p3},1,0\}\},\left\{0,0,\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}-\text{p3}-2 Q)^2+i \eta )},\frac{1}{(\text{p3}^2+i \eta )}\right\},1\right\}

1j08yoipllmf3

When dealing with products of tadpole integrals, the function may not always recognize that the appearing external momenta are spurious. For example, here there is no q momentum flowing through any of the lines

int = SFAD[{{ p1, 0}, {mg^2, 1}, 1}] SFAD[{{ p3, -2 p3 . q}, {0, 1}, 1}] 
 
FCLoopIntegralToGraph[int, {p1, p3}]

\frac{1}{(\text{p1}^2-\text{mg}^2+i \eta ) (\text{p3}^2-2 (\text{p3}\cdot q)+i \eta )}

1f2h2gla59jny

\text{False}

In this case we may explicitly tell the function that this integral doesn’t depend on any external momenta

FCLoopIntegralToGraph[int, {p1, p3}, Momentum -> {}] 
 
FCLoopGraphPlot[%]

\left\{\{1\to 1,1\to 1\},\left( \begin{array}{ccc} \;\text{p1} & 1 & -\text{mg}^2 \\ \;\text{p3}-q & 1 & 0 \\ \end{array} \right),\left\{\frac{1}{(\text{p1}^2-\text{mg}^2+i \eta )},\frac{1}{(\text{p3}^2-2 (\text{p3}\cdot q)+i \eta )}\right\},1\right\}

07slxnrgofd0x

Eye candy

The Style option can be used to label lines carrying different masses in a particular way

OptionValue[FCLoopGraphPlot, Style]

\{\{\text{InternalLine},\_,\_,0\}:\to \{\text{Dashed},\text{Thick},\text{Black}\},\{\text{InternalLine},\_,\_,\text{FeynCalc$\grave{ }$FCLoopGraphPlot$\grave{ }$Private$\grave{ }$mm$\_$}\;\text{/;}\;\text{FeynCalc$\grave{ }$FCLoopGraphPlot$\grave{ }$Private$\grave{ }$mm}\;\text{=!=}0\}:\to \{\text{Thick},\text{Black}\},\{\text{ExternalLine},\_\}:\to \{\text{Thick},\text{Black}\}\}

When dealing with factorizing integral it might be necessary to increase VertexDegree to 7 or 8 (or even a higher value, depending on the integrals)

FCLoopIntegralToGraph[FAD[{p1, m1}] FAD[{p2, m2}], {p1, p2}]
FCLoopGraphPlot[%]

\left\{\{1\to 1,1\to 1\},\left( \begin{array}{ccc} \;\text{p2} & 1 & -\text{m2}^2 \\ \;\text{p1} & 1 & -\text{m1}^2 \\ \end{array} \right),\left\{\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )}\right\},1\right\}

03f4j2xk2i2if

FCLoopIntegralToGraph[FAD[{p1, m1}] FAD[{p2, m2}] FAD[p3, p3 + q], {p1, p2, p3}, 
   VertexDegree -> 7] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2,2\to 2,2\to 2\},\left\{-q,q,\{\text{p3},1,0\},\{\text{p3}+q,1,0\},\left\{\text{p2},1,-\text{m2}^2\right\},\left\{\text{p1},1,-\text{m1}^2\right\}\right\},\left\{0,0,\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{((\text{p3}+q)^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )}\right\},1\right\}

0oh6kznveqek7

FCLoopIntegralToGraph[FAD[{p1, m1}] FAD[{p2, m2}] FAD[p3, p3 + q] FAD[{p4, m4}], 
   {p1, p2, p3, p4}, VertexDegree -> 9] 
 
FCLoopGraphPlot[%]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2,2\to 2,2\to 2,2\to 2\},\left\{-q,q,\{\text{p3},1,0\},\{\text{p3}+q,1,0\},\left\{\text{p4},1,-\text{m4}^2\right\},\left\{\text{p2},1,-\text{m2}^2\right\},\left\{\text{p1},1,-\text{m1}^2\right\}\right\},\left\{0,0,\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{((\text{p3}+q)^2+i \eta )},\frac{1}{(\text{p4}^2-\text{m4}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )}\right\},1\right\}

197y9zyue9u14

Here we choose to use thick dashed blue and red lines for massive lines containing mc and mg respectively. The massless lines are black an dashed.

FCLoopIntegralToGraph[ FAD[{k2, mb}, {k3}, {k1 - q, mc}, {k1 - k2, mc}, {k2 - k3}], {k1, k2, k3}] 
 
Magnify[FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, 
   Style -> {{"InternalLine", _, _, mm_ /; ! FreeQ[mm, mg]} -> {Red, Thick, Dashed}, 
     {"InternalLine", _, _, mm_ /; ! FreeQ[mm, mc]} -> {Blue, Thick, Dashed}}], 1.5]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2,1\to 3,2\to 3,2\to 3\},\left\{-q,q,\left\{\text{k1}-q,1,-\text{mc}^2\right\},\left\{\text{k1}-\text{k2},1,-\text{mc}^2\right\},\left\{\text{k2},1,-\text{mb}^2\right\},\{\text{k3},1,0\},\{\text{k2}-\text{k3},1,0\}\right\},\left\{0,0,\frac{1}{(\text{k3}^2+i \eta )},\frac{1}{((\text{k2}-\text{k3})^2+i \eta )},\frac{1}{(\text{k2}^2-\text{mb}^2+i \eta )},\frac{1}{((\text{k1}-q)^2-\text{mc}^2+i \eta )},\frac{1}{((\text{k1}-\text{k2})^2-\text{mc}^2+i \eta )}\right\},1\right\}

01oh594h7q2tr

FCLoopIntegralToGraph[ FAD[{k2, mg}, {k3, mc}, {k1, q}, {k1 - k2}, {k2 - k3, mc}], {k1, k2,k3}] 
 
Magnify[FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, 
   Style -> {{"InternalLine", _, _, mm_ /; ! FreeQ[mm, mg]} -> {Red, Thick, Dashed}, 
     {"InternalLine", _, _, mm_ /; ! FreeQ[mm, mc]} -> {Blue, Thick, Dashed}}], 1.5]

\left\{\{1\to 2,1\to 3,1\to 3,2\to 3,2\to 3\},\left( \begin{array}{ccc} \;\text{k2} & 1 & -\text{mg}^2 \\ \;\text{k3} & 1 & -\text{mc}^2 \\ \;\text{k2}-\text{k3} & 1 & -\text{mc}^2 \\ \;\text{k1}-\text{k2} & 1 & 0 \\ \;\text{k1} & 1 & -q^2 \\ \end{array} \right),\left\{\frac{1}{(\text{k3}^2-\text{mc}^2+i \eta )},\frac{1}{(\text{k2}^2-\text{mg}^2+i \eta )},\frac{1}{((\text{k1}-\text{k2})^2+i \eta )},\frac{1}{(\text{k1}^2-q^2+i \eta )},\frac{1}{((\text{k2}-\text{k3})^2-\text{mc}^2+i \eta )}\right\},1\right\}

1smoj49tufwtt

FCLoopIntegralToGraph[ FAD[{k2, mg}, {k3, mc}, {k1 - q}, {k2 - q, mb}, {k1 - k2}, {k2 - k3,mc}], 
   {k1, k2, k3}] 
 
Magnify[FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, 
   Style -> {{"InternalLine", _, _, mm_ /; ! FreeQ[mm, mg]} -> {Red, Thick, Dashed}, 
     {"InternalLine", _, _, mm_ /; ! FreeQ[mm, mc]} -> {Blue, Thick, Dashed}}], 1.5]

\left\{\{-3\to 2,-1\to 1,1\to 3,1\to 4,2\to 3,2\to 3,2\to 4,2\to 4\},\left\{-q,q,\left\{\text{k2}-q,1,-\text{mb}^2\right\},\left\{\text{k2},1,-\text{mg}^2\right\},\{\text{k1}-q,1,0\},\{\text{k1}-\text{k2},1,0\},\left\{\text{k3},1,-\text{mc}^2\right\},\left\{\text{k2}-\text{k3},1,-\text{mc}^2\right\}\right\},\left\{0,0,\frac{1}{((\text{k1}-q)^2+i \eta )},\frac{1}{(\text{k3}^2-\text{mc}^2+i \eta )},\frac{1}{(\text{k2}^2-\text{mg}^2+i \eta )},\frac{1}{((\text{k1}-\text{k2})^2+i \eta )},\frac{1}{((\text{k2}-q)^2-\text{mb}^2+i \eta )},\frac{1}{((\text{k2}-\text{k3})^2-\text{mc}^2+i \eta )}\right\},1\right\}

0ojspr0481s8i

FCLoopIntegralToGraph[ FAD[{k2, 0, 2}, {k1 - q}, {k1 - k3, mc}, {k2 - k3, mc}], {k1, k2, k3}] 
 
Magnify[FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, 
   Style -> {{"InternalLine", _, _, mm_ /; ! FreeQ[mm, mg]} -> {Red, Thick, Dashed}, 
     {"InternalLine", _, _, mm_ /; ! FreeQ[mm, mc]} -> {Blue, Thick, Dashed}}], 1.5]

\left\{\{-3\to 2,-1\to 1,1\to 2,1\to 2,1\to 2,1\to 2\},\left\{-q,q,\{\text{k2},2,0\},\{\text{k1}-q,1,0\},\left\{\text{k2}-\text{k3},1,-\text{mc}^2\right\},\left\{\text{k1}-\text{k3},1,-\text{mc}^2\right\}\right\},\left\{0,0,\frac{1}{(\text{k2}^2+i \eta )},\frac{1}{((\text{k1}-q)^2+i \eta )},\frac{1}{((\text{k2}-\text{k3})^2-\text{mc}^2+i \eta )},\frac{1}{((\text{k1}-\text{k3})^2-\text{mc}^2+i \eta )}\right\},1\right\}

0ick2585357k9

We can style a fully massive 1-loop box in a very creative way

FCLoopIntegralToGraph[FAD[{p, m1}, {p + q1, m2}, {p + q1 + q2, m3}, {p + q1 + q2 + q3, m4}], {p}]
FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, Style -> {
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m1]} -> {Red, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m2]} -> {Blue, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m3]} -> {Green, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m4]} -> {Purple, Thick},
    {"ExternalLine", q1} -> {Brown, Thick, Dashed} 
   }]

\left\{\{-4\to 4,-3\to 1,-2\to 2,-1\to 3,1\to 2,1\to 4,2\to 3,3\to 4\},\left\{\text{q1}+\text{q2}+\text{q3},\text{q3},\text{q2},\text{q1},\left\{p+\text{q1}+\text{q2},1,-\text{m3}^2\right\},\left\{p+\text{q1}+\text{q2}+\text{q3},1,-\text{m4}^2\right\},\left\{p+\text{q1},1,-\text{m2}^2\right\},\left\{p,1,-\text{m1}^2\right\}\right\},\left\{0,0,0,0,\frac{1}{(p^2-\text{m1}^2+i \eta )},\frac{1}{((p+\text{q1})^2-\text{m2}^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2})^2-\text{m3}^2+i \eta )},\frac{1}{((p+\text{q1}+\text{q2}+\text{q3})^2-\text{m4}^2+i \eta )}\right\},1\right\}

0uj086yxpjbhz

The same goes for a 2-loop box with 3 massive lines

FCLoopIntegralToGraph[FAD[{p1, m1}, {p2, m2}, {Q1 + p1, m3}, Q2 - p1, Q1 + p1 + p2, Q2 - p1 - p2, 
    Q2 + Q3 - p1 - p2], {p1, p2}] 
 
FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, Style -> {
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m1]} -> {Red, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m2]} -> {Blue, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m3]} -> {Green, Thick}, 
    {"InternalLine", _, _, mm_ /; ! FreeQ[mm, m4]} -> {Purple, Thick},
    {"ExternalLine", q1} -> {Brown, Thick, Dashed} 
   }]

\left\{\{-4\to 4,-3\to 1,-2\to 2,-1\to 3,1\to 4,1\to 6,2\to 3,2\to 6,3\to 5,4\to 5,5\to 6\},\left\{\text{Q1}+\text{Q2}+\text{Q3},\text{Q3},\text{Q2},\text{Q1},\{-\text{p1}-\text{p2}+\text{Q2}+\text{Q3},1,0\},\{-\text{p1}-\text{p2}+\text{Q2},1,0\},\left\{\text{p1},1,-\text{m1}^2\right\},\{\text{Q2}-\text{p1},1,0\},\left\{\text{p1}+\text{Q1},1,-\text{m3}^2\right\},\{\text{p1}+\text{p2}+\text{Q1},1,0\},\left\{\text{p2},1,-\text{m2}^2\right\}\right\},\left\{0,0,0,0,\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2-\text{m3}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2}+\text{Q3})^2+i \eta )}\right\},1\right\}

0dj2zs15imvb6

One can also (sort of) visualize the momentum flow, where we use powers to denote the dots

FCLoopIntegralToGraph[FCTopology[topo1X1, {SFAD[{{p2, 0}, {m1^2, 1}, 2}], 
     SFAD[{{p1, 0}, {m1^2, 1}, 2}], 
     SFAD[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}],
     SFAD[{{p1 + p3, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {}, {}, {}]] 
 
FCLoopGraphPlot[%, GraphPlot -> {MultiedgeStyle -> 0.35, Frame -> True}, Labeled -> {
    {"InternalLine", x_, pow_, _} :> x^pow, 
    {"ExternalLine", _} :> {}}]

\left\{\{1\to 2,1\to 3,1\to 3,2\to 3,2\to 3\},\left( \begin{array}{ccc} \;\text{p1}+\text{p2}+\text{p3} & 1 & 0 \\ \;\text{p2} & 2 & -\text{m1}^2 \\ \;\text{p1}+\text{p3} & 1 & 0 \\ \;\text{p1} & 2 & -\text{m1}^2 \\ \;\text{p2}+\text{p3} & 2 & 0 \\ \end{array} \right),\left\{\frac{1}{(\text{p2}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p1}+\text{p3})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3})^2+i \eta )}\right\},1\right\}

1d4z3vrsllip7