FCLoopGetKinematicInvariants[topo]
returns the list of kinematic invariants (masses and scalar products) present in the given topology topo
.
= FCTopology[topo2, {SFAD[{{l + P/2, 0}, {mq^2, 1}, 1}], SFAD[{{l - P/2, 0}, {mq^2, 1}, 1}], SFAD[{{k1 + l - P/2, 0}, {mq^2, 1},
topo1 1}]}, {l}, {k1, P}, {Hold[Pair][Momentum[k1, D], Momentum[k1, D]] -> 0, Hold[
][Momentum[P, D], Momentum[q, D]] -> 0, Hold[Pair][Momentum[P, D],
Pair[P, D]] -> 4*mq^2, Hold[Pair][Momentum[k2, D], Momentum[P, D]] -> 2*mq^
Momentum2, Hold[Pair][Momentum[k1, D], Momentum[k2, D]] -> 2*mq^2}, {}]
\text{FCTopology}\left(\text{topo2},\left\{\frac{1}{((l+\frac{P}{2})^2-\text{mq}^2+i \eta )},\frac{1}{((l-\frac{P}{2})^2-\text{mq}^2+i \eta )},\frac{1}{((\text{k1}+l-\frac{P}{2})^2-\text{mq}^2+i \eta )}\right\},\{l\},\{\text{k1},P\},\left\{\text{Hold}[\text{Pair}][\text{k1},\text{k1}]\to 0,\text{Hold}[\text{Pair}][P,q]\to 0,\text{Hold}[\text{Pair}][P,P]\to 4 \;\text{mq}^2,\text{Hold}[\text{Pair}][\text{k2},P]\to 2 \;\text{mq}^2,\text{Hold}[\text{Pair}][\text{k1},\text{k2}]\to 2 \;\text{mq}^2\right\},\{\}\right)
[topo1] FCLoopGetKinematicInvariants
\{\text{mq},\text{k1}\cdot P\}