FCLoopFindIntegralMappings[{int1, int2, ...}, {p1, p2, ...}]
finds mappings between scalar multiloop integrals int1, int2, ...
that depend on the loop momenta p1, p2, ...
using the algorithm of Alexey Pak arXiv:1111.0868.
The current implementation is based on the FindEquivalents
function from FIRE 6 arXiv:1901.07808
It is also possible to invoke the function as FCLoopFindIntegralMappings[{GLI[...], ...}, {FCTopology[...], ...}] or FCLoopFindIntegralMappings[{FCTopology[...], ...}]
.
Notice that in this case the value of the option FinalSubstitutions
is ignored, as replacement rules will be extracted directly from the definition of the topology.
The default output is a list of two lists. The first list contains mapping rules between different loop integrals, while the second list provides all unique master integrals extracted from the input.
An alternative output mode is activated when the option List
is set to True
. In this case the output is a list of lists, where each list contains master integrals that were identified to be identical.
The option PreferredIntegrals
can be used to enforce the mapping onto a preferred set of master integral. Notice that the final result will only contain those preferred integrals, that are actually present in the input.
Overview, FCTopology, GLI, FCLoopToPakForm, FCLoopPakOrder, FCLoopFindTopologyMappings
When given a list of FeynAmpDenominator
-integrals, the function will merely group identical integrals into sublists
= {FAD[{p1, m1}], FAD[{p1 + q, m1}], FAD[{p1, m2}]} ints
\left\{\frac{1}{\text{p1}^2-\text{m1}^2},\frac{1}{(\text{p1}+q)^2-\text{m1}^2},\frac{1}{\text{p1}^2-\text{m2}^2}\right\}
[ints, {p1}] FCLoopFindIntegralMappings
\left\{\left\{\frac{1}{\text{p1}^2-\text{m1}^2},\frac{1}{(\text{p1}+q)^2-\text{m1}^2}\right\},\left\{\frac{1}{\text{p1}^2-\text{m2}^2}\right\}\right\}
The following 3 integrals look rather different from each other, but are actually identical
= {FAD[p1] FAD[p1 - p3 - p4] FAD[p4] FAD[p3 + q1] FAD[{p3, m1}] FAD[{p1 - p4, m1}]*
ints [{p1 + q1, 0}, {p1 + q1, 0}], FAD[p4] FAD[p1 - p3 + q1] FAD[p3 + q1] FAD[p1 + p4 + q1]*
FAD[{p3, m1}] FAD[{p1 + q1, m1}] FAD[{p1 + p4 + 2 q1, 0}, {p1 + p4 + 2 q1, 0}],
FAD[p1] FAD[p4 - 2 q1] FAD[p3 + q1] FAD[p1 - p3 - p4 + 2 q1] FAD[{p3, m1}]*
FAD[{p1 - p4 + 2 q1, m1}] FAD[{p1 + q1, 0}, {p1 + q1, 0}]} FAD
\left\{\frac{1}{\text{p1}^2 \;\text{p4}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p1}+\text{q1})^4 (\text{p3}+\text{q1})^2 (\text{p1}-\text{p3}-\text{p4})^2 \left((\text{p1}-\text{p4})^2-\text{m1}^2\right)},\frac{1}{\text{p4}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p3}+\text{q1})^2 (\text{p1}-\text{p3}+\text{q1})^2 (\text{p1}+\text{p4}+\text{q1})^2 (\text{p1}+\text{p4}+2 \;\text{q1})^4 \left((\text{p1}+\text{q1})^2-\text{m1}^2\right)},\frac{1}{\text{p1}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p1}+\text{q1})^4 (\text{p3}+\text{q1})^2 (\text{p4}-2 \;\text{q1})^2 (\text{p1}-\text{p3}-\text{p4}+2 \;\text{q1})^2 \left((\text{p1}-\text{p4}+2 \;\text{q1})^2-\text{m1}^2\right)}\right\}
[ints, {p1, p3, p4}] FCLoopFindIntegralMappings
\left( \begin{array}{ccc} \frac{1}{\text{p1}^2 \;\text{p4}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p1}+\text{q1})^4 (\text{p3}+\text{q1})^2 (\text{p1}-\text{p3}-\text{p4})^2 \left((\text{p1}-\text{p4})^2-\text{m1}^2\right)} & \frac{1}{\text{p4}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p3}+\text{q1})^2 (\text{p1}-\text{p3}+\text{q1})^2 (\text{p1}+\text{p4}+\text{q1})^2 (\text{p1}+\text{p4}+2 \;\text{q1})^4 \left((\text{p1}+\text{q1})^2-\text{m1}^2\right)} & \frac{1}{\text{p1}^2 \left(\text{p3}^2-\text{m1}^2\right) (\text{p1}+\text{q1})^4 (\text{p3}+\text{q1})^2 (\text{p4}-2 \;\text{q1})^2 (\text{p1}-\text{p3}-\text{p4}+2 \;\text{q1})^2 \left((\text{p1}-\text{p4}+2 \;\text{q1})^2-\text{m1}^2\right)} \\ \end{array} \right)
If the input is a list of GLI
-integrals, FCLoopFindIntegralMappings
will return a list containing two sublists. The former will be a list of replacement rules while the latter will contain all unique master integrals
ClearAll[topo1, topo2];
= {
topos [topo1, {SFAD[{p1, m^2}], SFAD[{p2, m^2}]}, {p1, p2}, {}, {}, {}],
FCTopology[topo2, {SFAD[{p3, m^2}], SFAD[{p4, m^2}]}, {p3, p4}, {}, {}, {}]
FCTopology}
\left\{\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2-m^2+i \eta )},\frac{1}{(\text{p2}^2-m^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{\},\{\},\{\}\right),\text{FCTopology}\left(\text{topo2},\left\{\frac{1}{(\text{p3}^2-m^2+i \eta )},\frac{1}{(\text{p4}^2-m^2+i \eta )}\right\},\{\text{p3},\text{p4}\},\{\},\{\},\{\}\right)\right\}
= {GLI[topo1, {1, 1}], GLI[topo1, {1, 2}], GLI[topo1, {2, 1}], GLI[topo2, {1, 1}],
glis [topo2, {2, 2}]} GLI
\left\{G^{\text{topo1}}(1,1),G^{\text{topo1}}(1,2),G^{\text{topo1}}(2,1),G^{\text{topo2}}(1,1),G^{\text{topo2}}(2,2)\right\}
[glis, topos] FCLoopFindIntegralMappings
\left\{\left\{G^{\text{topo2}}(1,1)\to G^{\text{topo1}}(1,1),G^{\text{topo1}}(2,1)\to G^{\text{topo1}}(1,2)\right\},\left\{G^{\text{topo1}}(1,1),G^{\text{topo1}}(1,2),G^{\text{topo2}}(2,2)\right\}\right\}
This behavior can be turned off by setting the value of the option List
to True
[glis, topos, List -> True] FCLoopFindIntegralMappings
\left\{\left\{G^{\text{topo1}}(1,1),G^{\text{topo2}}(1,1)\right\},\left\{G^{\text{topo1}}(1,2),G^{\text{topo1}}(2,1)\right\},\left\{G^{\text{topo2}}(2,2)\right\}\right\}
In practice, one usually has a list of preferred integrals onto which one would like to map the occurring master integrals. Such integrals can be specified via the PreferredIntegrals
option
[glis, topos, PreferredIntegrals -> {GLI[topo2, {1, 1}],
FCLoopFindIntegralMappings[topo2, {2, 1}]}] GLI
\left( \begin{array}{ccc} G^{\text{topo1}}(1,1)\to G^{\text{topo2}}(1,1) & G^{\text{topo1}}(1,2)\to G^{\text{topo2}}(2,1) & G^{\text{topo1}}(2,1)\to G^{\text{topo2}}(2,1) \\ G^{\text{topo2}}(1,1) & G^{\text{topo2}}(2,1) & G^{\text{topo2}}(2,2) \\ \end{array} \right)
The indices of GLI
s do not have to be integers
= {
topos [prop2LtopoG20, {SFAD[{{p1, 0}, {0, 1}, 1}],
FCTopology[{{p1 + q1, 0}, {m3^2, 1}, 1}], SFAD[{{p3, 0}, {0, 1}, 1}],
SFAD[{{p3 + q1, 0}, {0, 1}, 1}], SFAD[{{p1 - p3, 0}, {0, 1}, 1}]},
SFAD{p1, p3}, {q1}, {}, {}],
[prop2LtopoG21, {SFAD[{{p1, 0}, {m1^2, 1}, 1}],
FCTopology[{{p1 + q1, 0}, {m3^2, 1}, 1}],
SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p3 + q1, 0}, {0, 1}, 1}],
SFAD[{{p1 - p3, 0}, {0, 1}, 1}]}, {p1, p3}, {q1}, {}, {}]
SFAD}
\left\{\text{FCTopology}\left(\text{prop2LtopoG20},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p1}+\text{q1})^2-\text{m3}^2+i \eta )},\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{((\text{p3}+\text{q1})^2+i \eta )},\frac{1}{((\text{p1}-\text{p3})^2+i \eta )}\right\},\{\text{p1},\text{p3}\},\{\text{q1}\},\{\},\{\}\right),\text{FCTopology}\left(\text{prop2LtopoG21},\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{((\text{p1}+\text{q1})^2-\text{m3}^2+i \eta )},\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{((\text{p3}+\text{q1})^2+i \eta )},\frac{1}{((\text{p1}-\text{p3})^2+i \eta )}\right\},\{\text{p1},\text{p3}\},\{\text{q1}\},\{\},\{\}\right)\right\}
[{GLI[prop2LtopoG21, {0, n1, n2, n3, n4}],
FCLoopFindIntegralMappings[prop2LtopoG20, {0, n1, n2, n3, n4}]}, topos] GLI
\left( \begin{array}{c} G^{\text{prop2LtopoG21}}(0,\text{n1},\text{n2},\text{n3},\text{n4})\to G^{\text{prop2LtopoG20}}(0,\text{n1},\text{n2},\text{n3},\text{n4}) \\ G^{\text{prop2LtopoG20}}(0,\text{n1},\text{n2},\text{n3},\text{n4}) \\ \end{array} \right)
It is also possible to find mappings for factorizing integrals, provided that suitable products of integrals are given as preferred integrals
= {FCTopology[prop2Ltopo31313, {SFAD[{{
topos I p1, 0}, {-m3^2, -1}, 1}], SFAD[{{I (p1 + q1), 0}, {-m1^2, -1}, 1}], SFAD[{{
I p3, 0}, {-m3^2, -1}, 1}], SFAD[{{I
+ q1), 0}, {-m1^2, -1}, 1}], SFAD[{{
(p3 I (p1 - p3), 0}, {-m3^2, -1}, 1}]}, {p1, p3}, {q1}, {SPD[q1, q1] -> m1^2}, {}],
[tad1Ltopo2, {SFAD[{{I p1, 0}, {-m3^2, -1}, 1}]}, {p1}, {}, {SPD[q1,q1] -> m1^2}, {}]} FCTopology
\left\{\text{FCTopology}\left(\text{prop2Ltopo31313},\left\{\frac{1}{(-\text{p1}^2+\text{m3}^2-i \eta )},\frac{1}{(-(\text{p1}+\text{q1})^2+\text{m1}^2-i \eta )},\frac{1}{(-\text{p3}^2+\text{m3}^2-i \eta )},\frac{1}{(-(\text{p3}+\text{q1})^2+\text{m1}^2-i \eta )},\frac{1}{(-(\text{p1}-\text{p3})^2+\text{m3}^2-i \eta )}\right\},\{\text{p1},\text{p3}\},\{\text{q1}\},\left\{\text{q1}^2\to \;\text{m1}^2\right\},\{\}\right),\text{FCTopology}\left(\text{tad1Ltopo2},\left\{\frac{1}{(-\text{p1}^2+\text{m3}^2-i \eta )}\right\},\{\text{p1}\},\{\},\left\{\text{q1}^2\to \;\text{m1}^2\right\},\{\}\right)\right\}
Here we ask the function to map all products of two 1-loop tadpoles to GLI[tad1Ltopo2,{1}]^2
[{GLI[tad1Ltopo2, {1}]^2,
FCLoopFindIntegralMappings[prop2Ltopo31313, {0, 0, 1, 0, 1}]}, topos, PreferredIntegrals -> {GLI[tad1Ltopo2, {1}]^2}] GLI
\left( \begin{array}{c} G^{\text{prop2Ltopo31313}}(0,0,1,0,1)\to G^{\text{tad1Ltopo2}}(1)^2 \\ G^{\text{tad1Ltopo2}}(1)^2 \\ \end{array} \right)