FCLoopCreateRuleGLIToGLI[topology1, topology2]
creates a GLI replacement rule assuming that the topology2
is a subtopology of topology1
. Both topologies must be given as FCTopology
objects.
It is also possible to use FCLoopCreateRuleGLIToGLI[topo1, {subtopo1, subtopo2, ...}]
provided that {subtopo1, subtopo2, ...}
are subtopologies of topo1
that were obtained by removing some propagators from topo1
and not performing any loop momentum shifts afterwards.
Furthermore, when working with lists of topologies one can write FCLoopCreateRuleGLIToGLI[{topo1, topo2, ...}, {{subtopo11, subtopo12, ...}, {subtopo21, subtopo22, ...}, ..}]
.
Overview, FCTopology, GLI, FCLoopFindTopologies, FCLoopFindTopologyMappings.
[FCTopology[topo1, {SFAD[p]}], FCTopology[topo2, {SFAD[p]}]] FCLoopCreateRuleGLIToGLI
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1})
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},0)
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[q], SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n2$\_$},\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},\text{n2})
[FCTopology[topo1, {SFAD[r], SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n2$\_$}):\to G^{\text{topo1}}(0,\text{n2},0)
[FCTopology["tmpTopo4",
FCLoopCreateRuleGLIToGLI{SFAD[{{0, (k1 + k2) . nb}, {0, 1}, 1}], SFAD[{{0, (k1 - k3) . n}, {0, 1}, 1}],
[{{0, n . (-k1 - k2 + q)}, {0, 1}, 1}], SFAD[{{0, nb . (-k1 + k3 + q)}, {0, 1}, 1}],
SFAD[{{-k1, 0}, {0, 1}, 1}], SFAD[{{k2, 0}, {0, 1}, 1}], SFAD[{{k1 + k2, 0}, {0, 1}, 1}],
SFAD[{{-k3, 0}, {0, 1}, 1}], SFAD[{{-k1 + k3, 0}, {0, 1}, 1}],
SFAD[{{k1 - k3 - q, 0}, {0, 1}, 1}], SFAD[{{k1 + k2 - k3 - q, 0}, {0, 1}, 1}],
SFAD[{{-k1 - k2 + q, 0}, {0, 1}, 1}]}],
SFAD
["tmpTopo18", {SFAD[{{0, (k1 + k2) . nb}, {0, 1}, 1}],
FCTopology[{{0, n . (-k1 - k2 + q)}, {0, 1}, 1}], SFAD[{{0, nb . (-k1 + k3 + q)}, {0, 1}, 1}],
SFAD[{{-k1, 0}, {0, 1}, 1}], SFAD[{{k2, 0}, {0, 1}, 1}],
SFAD[{{k1 + k2, 0}, {0, 1}, 1}], SFAD[{{-k3, 0}, {0, 1}, 1}],
SFAD[{{-k1 + k3, 0}, {0, 1}, 1}], SFAD[{{k1 - k3 - q, 0}, {0, 1}, 1}],
SFAD[{{k1 + k2 - k3 - q, 0}, {0, 1}, 1}], SFAD[{{-k1 - k2 + q, 0}, {0, 1}, 1}]}]] SFAD
G^{\text{tmpTopo18}}(\text{n1$\_$},\text{n3$\_$},\text{n4$\_$},\text{n5$\_$},\text{n6$\_$},\text{n7$\_$},\text{n8$\_$},\text{n9$\_$},\text{n10$\_$},\text{n11$\_$},\text{n12$\_$}):\to G^{\text{tmpTopo4}}(\text{n1},0,\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9},\text{n10},\text{n11},\text{n12})
[FCTopology["tad2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - p2, m3}]},
FCLoopIntegralToGraph{p1, p2}, {}, {}, {}]]
\left\{\{1\to 2,1\to 2,1\to 2\},\left( \begin{array}{ccc} \;\text{p1} & 1 & -\text{m1}^2 \\ \;\text{p2} & 1 & -\text{m2}^2 \\ \;\text{p1}-\text{p2} & 1 & -\text{m3}^2 \\ \end{array} \right),\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )}\right\},1\right\}
[
FCLoopCreateRuleGLIToGLI{FCTopology["prop2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}],
[{p1 - p2, m5}]}, {p1, p2}, {q}, {}, {}],
FAD["tad2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - p2, m3}]}, {p1, p2}, {}, {}, {}]}, {
FCTopology{
["prop2lX1", {FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}], FAD[{p1 - p2, m5}]},
FCTopology{p1, p2}, {q}, {}, {}],
["prop2lX5", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}]},
FCTopology{p1, p2}, {q}, {}, {}]
},
{
["tad2lX2", {FAD[{p1, m1}], FAD[{p1 - p2, m3}]}, {p1, p2}, {}, {}, {}],
FCTopology["tad2lX3", {FAD[{p1, m1}], FAD[{p2, m2}]}, {p1, p2}, {}, {}, {}]
FCTopology}
}]
\left\{\left\{G^{\text{prop2lX1}}(\text{n2$\_$},\text{n3$\_$},\text{n4$\_$},\text{n5$\_$}):\to G^{\text{prop2l}}(0,\text{n2},\text{n3},\text{n4},\text{n5}),G^{\text{prop2lX5}}(\text{n1$\_$},\text{n2$\_$},\text{n3$\_$},\text{n4$\_$}):\to G^{\text{prop2l}}(\text{n1},\text{n2},\text{n3},\text{n4},0)\right\},\left\{G^{\text{tad2lX2}}(\text{n1$\_$},\text{n3$\_$}):\to G^{\text{tad2l}}(\text{n1},0,\text{n3}),G^{\text{tad2lX3}}(\text{n1$\_$},\text{n2$\_$}):\to G^{\text{tad2l}}(\text{n1},\text{n2},0)\right\}\right\}
Using the option Reverse
we can also generate inverse replacement rules
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[q], SFAD[p]}], Reverse -> True] FCTopology
G^{\text{topo1}}(\text{n1$\_$},\text{n2$\_$}):\to G^{\text{topo2}}(\text{n2},\text{n1})
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},0)