FCLoopBasisIncompleteQ[int, {q1, q2, ...}] checks
whether the loop integral or topology int lacks propagators
need to have a linearly independent basis .
The input can also consist of an FCTopology object or a
list thereof.
Overview, FCLoopBasisOverdeterminedQ.
FAD[{q1, m1}]
FCLoopBasisIncompleteQ[%, {q1}]\frac{1}{\text{q1}^2-\text{m1}^2}
\text{False}
SPD[q1, l] FAD[{q1, m1}, {q1 - l + p, m}]
FCLoopBasisIncompleteQ[%, {q1}]\frac{l\cdot \;\text{q1}}{\left(\text{q1}^2-\text{m1}^2\right).\left((-l+p+\text{q1})^2-m^2\right)}
\text{False}
FAD[{q1, m1}, {q2, m2}]
FCLoopBasisIncompleteQ[%, {q1, q2}]\frac{1}{\left(\text{q1}^2-\text{m1}^2\right).\left(\text{q2}^2-\text{m2}^2\right)}
\text{True}
FAD[q1, q2, {q1 - l1, m1}, {q2 - l2, m2}]
FCLoopBasisIncompleteQ[%, {q1, q2}]\frac{1}{\text{q1}^2.\text{q2}^2.\left((\text{q1}-\text{l1})^2-\text{m1}^2\right).\left((\text{q2}-\text{l2})^2-\text{m2}^2\right)}
\text{True}
CSPD[q1, l] CFAD[{q1, m1}, {q1 - l + p, m}]
FCLoopBasisIncompleteQ[%, {q1}]\frac{l\cdot \;\text{q1}}{(\text{q1}^2+\text{m1}-i \eta ).((-l+p+\text{q1})^2+m-i \eta )}
\text{False}
SFAD[{q1, m1}, {q2, m2}]
FCLoopBasisIncompleteQ[%, {q1, q2}]\frac{1}{(\text{q1}^2-\text{m1}+i \eta ).(\text{q2}^2-\text{m2}+i \eta )}
\text{True}
FCLoopBasisIncompleteQ[FCTopology[topo, {FAD[p1],
FAD[p2], FAD[p1 - q], FAD[p2 - q]}, {p1, p2}, {q}, {}, {}]]\text{True}
FCLoopBasisIncompleteQ[{
FCTopology[topo1, {FAD[p1], FAD[p2], FAD[p1 - q], FAD[p2 - q]}, {p1, p2}, {q}, {}, {}],
FCTopology[topo2, {FAD[p1], FAD[p2], FAD[p1 - q], FAD[p2 - p1]}, {p1, p2}, {q}, {}, {}],
FCTopology[topo3, {FAD[p1], FAD[p1 - q]}, {p1}, {q}, {}, {}]
}]\{\text{True},\text{True},\text{False}\}