FCGramMatrix[{p1, p2, ...}]
creates a Gram matrix from the given list of momenta.
[{p1, p2}] FCGramMatrix
\left( \begin{array}{cc} 2 \;\text{p1}^2 & 2 (\text{p1}\cdot \;\text{p2}) \\ 2 (\text{p1}\cdot \;\text{p2}) & 2 \;\text{p2}^2 \\ \end{array} \right)
[{p1, p2, p3}] FCGramMatrix
\left( \begin{array}{ccc} 2 \;\text{p1}^2 & 2 (\text{p1}\cdot \;\text{p2}) & 2 (\text{p1}\cdot \;\text{p3}) \\ 2 (\text{p1}\cdot \;\text{p2}) & 2 \;\text{p2}^2 & 2 (\text{p2}\cdot \;\text{p3}) \\ 2 (\text{p1}\cdot \;\text{p3}) & 2 (\text{p2}\cdot \;\text{p3}) & 2 \;\text{p3}^2 \\ \end{array} \right)
[{p1, p2, p3}, Head -> {CartesianPair, CartesianMomentum},Dimension -> D - 1]
FCGramMatrix
Det[%]
\left( \begin{array}{ccc} 2 \;\text{p1}^2 & 2 (\text{p1}\cdot \;\text{p2}) & 2 (\text{p1}\cdot \;\text{p3}) \\ 2 (\text{p1}\cdot \;\text{p2}) & 2 \;\text{p2}^2 & 2 (\text{p2}\cdot \;\text{p3}) \\ 2 (\text{p1}\cdot \;\text{p3}) & 2 (\text{p2}\cdot \;\text{p3}) & 2 \;\text{p3}^2 \\ \end{array} \right)
-8 \;\text{p3}^2 (\text{p1}\cdot \;\text{p2})^2-8 \;\text{p1}^2 (\text{p2}\cdot \;\text{p3})^2-8 \;\text{p2}^2 (\text{p1}\cdot \;\text{p3})^2+8 \;\text{p1}^2 \;\text{p2}^2 \;\text{p3}^2+16 (\text{p1}\cdot \;\text{p2}) (\text{p1}\cdot \;\text{p3}) (\text{p2}\cdot \;\text{p3})
[{p1, p2, p3}, Head -> {CartesianPair, CartesianMomentum}, Dimension -> D - 1] FCGramDeterminant
-8 \;\text{p3}^2 (\text{p1}\cdot \;\text{p2})^2-8 \;\text{p1}^2 (\text{p2}\cdot \;\text{p3})^2-8 \;\text{p2}^2 (\text{p1}\cdot \;\text{p3})^2+8 \;\text{p1}^2 \;\text{p2}^2 \;\text{p3}^2+16 (\text{p1}\cdot \;\text{p2}) (\text{p1}\cdot \;\text{p3}) (\text{p2}\cdot \;\text{p3})