FeynCalc manual (development version)

DotSimplify

DotSimplify[exp] expands and reorders noncommutative terms in exp. Simplifying relations may be specified by the option DotSimplifyRelations or by Commutator and AntiCommutator definitions. Whether exp is expanded noncommutatively depends on the option Expanding.

See also

Overview, AntiCommutator, Commutator, Calc.

Examples

UnDeclareAllCommutators[] 
 
UnDeclareAllAntiCommutators[]
GA[\[Mu]] . (2 GS[p] - GS[q]) . GA[\[Nu]] 
 
DotSimplify[%]

γˉμ.(2γˉpγˉq).γˉν\bar{\gamma }^{\mu }.\left(2 \bar{\gamma }\cdot \overline{p}-\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }

2γˉμ.(γˉp).γˉνγˉμ.(γˉq).γˉν2 \bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}\right).\bar{\gamma }^{\nu }-\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }

DeclareNonCommutative[a, b, c] 
 
a . (b - z c) . a 
 
DotSimplify[%]

a.(bcz).aa.(b-c z).a

a.b.aza.c.aa.b.a-z a.c.a

Commutator[a, c] = 1 
 
DotSimplify[a . (b - z c) . a]

11

a.b.az(c.a.a+a)a.b.a-z (c.a.a+a)

Commutator[a, c] =. 
 
DotSimplify[a . (b - z c) . a]

a.b.aza.c.aa.b.a-z a.c.a

AntiCommutator[b, a] = c 
 
DotSimplify[a . (b - z c) . a]

cc

a.a.bza.c.a+a.c-a.a.b-z a.c.a+a.c

AntiCommutator[b, a] =. 
 
DotSimplify[a . (b - z c) . a, DotSimplifyRelations -> {a . c -> 1/z}]

a.b.aaa.b.a-a

UnDeclareNonCommutative[a, b, c] 
 
DeclareNonCommutative[x] 
 
DotSimplify[x . x . x]

x.x.xx.x.x

DotSimplify[x . x . x, DotPower -> True] 
 
UnDeclareNonCommutative[x]

x3x^3

Check some relations between noncommutative expressions involving two operators QQ and PP

DeclareNonCommutative[Q, P]
lhs = (Q . Commutator[Q, P] + Commutator[Q, P] . Q)/2 
 
rhs = Commutator[Q, Q . P + P . Q]/2 
 
DotSimplify[lhs - rhs] 
 
% // ExpandAll

12(Q.[Q,P]+[Q,P].Q)\frac{1}{2} (Q.[Q,P]+[Q,P].Q)

12[Q,P.Q+Q.P]\frac{1}{2} [Q,P.Q+Q.P]

12(P.Q.QQ.Q.P)+12(Q.Q.PP.Q.Q)\frac{1}{2} (P.Q.Q-Q.Q.P)+\frac{1}{2} (Q.Q.P-P.Q.Q)

00

Commutator[Q, P] = I;

Introduce the dilation operator DD from the affine quantization and verify that [Q,D]=i[Q,D]=i \hbar (cf. arXiv:2108.10713)

DOp = (Q . P + P . Q)/2;
Commutator[Q, DOp] 
 
% // DotSimplify // ExpandAll

[Q,12(P.Q+Q.P)]\left[Q,\frac{1}{2} (P.Q+Q.P)\right]

iQi Q

UnDeclareAllCommutators[] 
 
UnDeclareAllAntiCommutators[]