DotSimplify[exp]
expands and reorders noncommutative terms in exp. Simplifying relations may be specified by the option DotSimplifyRelations
or by Commutator
and AntiCommutator
definitions. Whether exp is expanded noncommutatively depends on the option Expanding
.
Overview, AntiCommutator, Commutator, Calc.
[]
UnDeclareAllCommutators
[] UnDeclareAllAntiCommutators
[\[Mu]] . (2 GS[p] - GS[q]) . GA[\[Nu]]
GA
[%] DotSimplify
\bar{\gamma }^{\mu }.\left(2 \bar{\gamma }\cdot \overline{p}-\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }
2 \bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}\right).\bar{\gamma }^{\nu }-\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }
[a, b, c]
DeclareNonCommutative
a . (b - z c) . a
[%] DotSimplify
a.(b-c z).a
a.b.a-z a.c.a
[a, c] = 1
Commutator
[a . (b - z c) . a] DotSimplify
1
a.b.a-z (c.a.a+a)
[a, c] =.
Commutator
[a . (b - z c) . a] DotSimplify
a.b.a-z a.c.a
[b, a] = c
AntiCommutator
[a . (b - z c) . a] DotSimplify
c
-a.a.b-z a.c.a+a.c
[b, a] =.
AntiCommutator
[a . (b - z c) . a, DotSimplifyRelations -> {a . c -> 1/z}] DotSimplify
a.b.a-a
[a, b, c]
UnDeclareNonCommutative
[x]
DeclareNonCommutative
[x . x . x] DotSimplify
x.x.x
[x . x . x, DotPower -> True]
DotSimplify
[x] UnDeclareNonCommutative
x^3
Check some relations between noncommutative expressions involving two operators Q and P
[Q, P] DeclareNonCommutative
= (Q . Commutator[Q, P] + Commutator[Q, P] . Q)/2
lhs
= Commutator[Q, Q . P + P . Q]/2
rhs
[lhs - rhs]
DotSimplify
% // ExpandAll
\frac{1}{2} (Q.[Q,P]+[Q,P].Q)
\frac{1}{2} [Q,P.Q+Q.P]
\frac{1}{2} (P.Q.Q-Q.Q.P)+\frac{1}{2} (Q.Q.P-P.Q.Q)
0
[Q, P] = I; Commutator
Introduce the dilation operator D from the affine quantization and verify that [Q,D]=i \hbar (cf. arXiv:2108.10713)
= (Q . P + P . Q)/2; DOp
[Q, DOp]
Commutator
% // DotSimplify // ExpandAll
\left[Q,\frac{1}{2} (P.Q+Q.P)\right]
i Q
[]
UnDeclareAllCommutators
[] UnDeclareAllAntiCommutators