DiracGammaExpand[exp]
expands Dirac matrices contracted to linear combinations of 4-vectors. All DiracGamma[Momentum[a+b+ ...]]
will be expanded to DiracGamma[Momentum[a]] + DiracGamma[Momentum[b]] + DiracGamma[Momentum[...]]
.
Overview, DiracGamma, DiracGammaCombine, DiracSimplify, DiracTrick.
[q] . GS[p - q]
GS
= DiracGammaExpand[%] ex
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \left(\overline{p}-\overline{q}\right)\right)
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{p}-\bar{\gamma }\cdot \overline{q}\right)
// StandardForm
ex
(*DiracGamma[Momentum[q]] . (DiracGamma[Momentum[p]] - DiracGamma[Momentum[q]])*)
DiracGammaExpand
rewrites \gamma^{\mu } (p-q)_{\mu } as \gamma^{mu } p_{mu } - \gamma^{\mu } q_{\mu }.
The inverse operation is DiracGammaCombine
.
[q] . (GS[p] - GS[q])
GS
= DiracGammaCombine[%] ex
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{p}-\bar{\gamma }\cdot \overline{q}\right)
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \left(\overline{p}-\overline{q}\right)\right)
// StandardForm
ex
(*DiracGamma[Momentum[q]] . DiracGamma[Momentum[p - q]]*)
It is possible to perform the expansions only on Dirac matrices contracted with particular momenta.
[\[Mu]] . (GSD[p1 + p2] + m) . GAD[\[Nu]] + c2 GAD[\[Mu]] . (GSD[q1 + q2] + m) . GAD[\[Nu]]
c1 GAD
[%, Momentum -> {q1}] DiracGammaExpand
\text{c1} \gamma ^{\mu }.(m+\gamma \cdot (\text{p1}+\text{p2})).\gamma ^{\nu }+\text{c2} \gamma ^{\mu }.(m+\gamma \cdot (\text{q1}+\text{q2})).\gamma ^{\nu }
\text{c1} \gamma ^{\mu }.(m+\gamma \cdot (\text{p1}+\text{p2})).\gamma ^{\nu }+\text{c2} \gamma ^{\mu }.(m+\gamma \cdot \;\text{q1}+\gamma \cdot \;\text{q2}).\gamma ^{\nu }
If the input expression contains DiracSigma
, DiracGammaExpand
will expand Feynman slashes inside DiracSigma
and call DiracSigmaExpand
.
[GSD[p + q], GSD[r]]
DiracSigma
[%] DiracGammaExpand
\sigma ^{p+qr}
\sigma ^{pr}+\sigma ^{qr}
The call to DiracSigmaExpand
can be inhibited by disabling the corresponding option.
[DiracSigma[GSD[p + q], GSD[r]], DiracSigmaExpand -> False] DiracGammaExpand
\text{DiracSigma}(\gamma \cdot p+\gamma \cdot q,\gamma \cdot r)
Use DiracSimplify
for noncommutative expansions with the corresponding simplifications.
[GS[q] . (GS[p - q])] DiracSimplify
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{p}\right)-\overline{q}^2
If simplifications are not required, you may also combine DiracGammaExpand
with DotSimplify
.
[DiracGammaExpand[GS[q] . (GS[p - q])]] DotSimplify
\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{p}\right)-\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{q}\right)