FeynCalc manual (development version)

DiracBasis

DiracBasis[any] is a head which is wrapped around Dirac structures (and the 1) as a result of the function DiracReduce. For more details, see the documentation for DiracReduce.

See also

Overview

Examples

Options[DiracReduce]

{Contract  True,DiracGammaCombine  True,DiracSimplify  False,DiracSpinorNormalization  Relativistic,DiracOrder  True,DotSimplify  True,FeynCalcExternal  False,FeynCalcInternal  False,FCVerbose  False,Factoring  False,FinalSubstitutions{DiracBasis  Identity},SpinorChainEvaluate  True}\{\text{Contract}\to \;\text{True},\text{DiracGammaCombine}\to \;\text{True},\text{DiracSimplify}\to \;\text{False},\text{DiracSpinorNormalization}\to \;\text{Relativistic},\text{DiracOrder}\to \;\text{True},\text{DotSimplify}\to \;\text{True},\text{FeynCalcExternal}\to \;\text{False},\text{FeynCalcInternal}\to \;\text{False},\text{FCVerbose}\to \;\text{False},\text{Factoring}\to \;\text{False},\text{FinalSubstitutions}\to \{\text{DiracBasis}\to \;\text{Identity}\},\text{SpinorChainEvaluate}\to \;\text{True}\}

DiracReduce[GA[\[Mu], \[Nu], \[Rho]], FinalSubstitutions -> {}]

i  DiracBasis(DiracBasis(γˉ$MU($19)).DiracBasis(γˉ5))ϵˉμνρ  $MU($19)+DiracBasis(γˉρ)gˉμνDiracBasis(γˉν)gˉμρ+DiracBasis(γˉμ)gˉνρi \;\text{DiracBasis}\left(\text{DiracBasis}\left(\bar{\gamma }^{\text{\$MU}(\text{\$19})}\right).\text{DiracBasis}\left(\bar{\gamma }^5\right)\right) \bar{\epsilon }^{\mu \nu \rho \;\text{\$MU}(\text{\$19})}+\text{DiracBasis}\left(\bar{\gamma }^{\rho }\right) \bar{g}^{\mu \nu }-\text{DiracBasis}\left(\bar{\gamma }^{\nu }\right) \bar{g}^{\mu \rho }+\text{DiracBasis}\left(\bar{\gamma }^{\mu }\right) \bar{g}^{\nu \rho }