CovariantD[mu]
is a generic covariant derivative with Lorentz index \mu.
CovariantD[x, mu]
is a generic covariant derivative with respect to x^{\mu }.
CovariantD[mu, a, b]
is a covariant derivative for a bosonic field that acts on QuantumField[f, {}, {a, b}]
, where f
is some field name and a
and b
are two SU(N) indices in the adjoint representation.
CovariantD[OPEDelta, a, b]
is a short form for CovariantD[mu, a, b] FV[OPEDelta, mu]
.
CovariantD[{OPEDelta, a, b}, {n}]
yields the product of n
operators, where n
is an integer.
CovariantD[OPEDelta, a, b, {m, n}]
gives the expanded form of CovariantD[OPEDelta, a, b]^m
up to order g^n for the gluon, where n is an integer and g the coupling constant indicated by the setting of the option CouplingConstant
.
CovariantD[OPEDelta, {m, n}]
gives the expanded form of CovariantD[OPEDelta]^m
up to order g^n of the fermionic field. To obtain the explicit expression for a particular covariant derivative, the option Explicit
must be set to True
.
[\[Mu]] CovariantD
D_{\mu }
[\[Mu], a, b] CovariantD
D_{\mu }^{ab}
[\[Mu], Explicit -> True] CovariantD
\vec{\partial }_{\mu }-i g_s T^{\text{c19}}.A_{\mu }^{\text{c19}}
The first argument of CovariantD
is interpreted as type LorentzIndex
, except for OPEDelta
, which is type Momentum
.
[OPEDelta] CovariantD
D_{\Delta }
[OPEDelta, a, b] CovariantD
D_{\Delta }^{ab}
[OPEDelta, a, b, Explicit -> True] CovariantD
\delta ^{ab} \vec{\partial }_{\Delta }-g_s A_{\Delta }^{\text{c20}} f^{ab\text{c20}}
[OPEDelta, Explicit -> True] CovariantD
\vec{\partial }_{\Delta }-i g_s T^{\text{c21}}.A_{\Delta }^{\text{c21}}
[OPEDelta, a, b, {2}] CovariantD
\left(\delta ^{a\text{c22}} \vec{\partial }_{\Delta }-g_s A_{\Delta }^{\text{e23}} f^{a\text{c22}\;\text{e23}}\right).\left(\delta ^{b\text{c22}} \vec{\partial }_{\Delta }-g_s A_{\Delta }^{\text{e24}} f^{\text{c22}b\text{e24}}\right)
This gives m * \vec{\partial}_{\Delta}, the partial derivative \vec{\partial}_{\mu } contracted with \Delta ^{\mu }
[OPEDelta, a, b, {OPEm, 0}] CovariantD
\delta ^{ab} \left(\vec{\partial }_{\Delta }\right){}^m
The expansion up to first order in the coupling constant g_s (the sum is the FeynCalcOPESum
)
[OPEDelta, a, b, {OPEm, 1}] CovariantD
\delta ^{ab} \left(\vec{\partial }_{\Delta }\right){}^m-g_s \left(\sum _{i=0}^{-1+m} \left(\vec{\partial }_{\Delta }\right){}^i.A_{\Delta }^{\text{c34}_1}.\left(\vec{\partial }_{\Delta }\right){}^{-1-i+m} f^{ab\text{c34}_1}\right)
The expansion up to second order in the g_s
[OPEDelta, a, b, {OPEm, 2}] CovariantD
-g_s \left(\sum _{i=0}^{-1+m} \left(\vec{\partial }_{\Delta }\right){}^i.A_{\Delta }^{\text{c42}_1}.\left(\vec{\partial }_{\Delta }\right){}^{-1-i+m} f^{ab\text{c42}_1}\right)-g_s^2 \left(\sum _{j=0}^{-2+m} \left(\sum _{i=0}^j \left(\vec{\partial }_{\Delta }\right){}^i.A_{\Delta }^{\text{c46}_1}.\left(\vec{\partial }_{\Delta }\right){}^{-i+j}.A_{\Delta }^{\text{c46}_2}.\left(\vec{\partial }_{\Delta }\right){}^{-2-j+m} f^{a\text{c46}_1\text{e45}_1} f^{b\text{c46}_2\text{e45}_1}\right)\right)+\delta ^{ab} \left(\vec{\partial }_{\Delta }\right){}^m
[OPEDelta, a, b]^OPEm CovariantD
\left(D_{\Delta }^{ab}\right){}^m
[OPEDelta, {OPEm, 2}] CovariantD
-i g_s \left(\sum _{i=0}^{-1+m} \left(\vec{\partial }_{\Delta }\right){}^i.A_{\Delta }^{\text{c55}_1}.\left(\vec{\partial }_{\Delta }\right){}^{-1-i+m} T^{\text{c55}_1}\right)-g_s^2 \left(\sum _{j=0}^{-2+m} \left(\sum _{i=0}^j T^{\text{c59}_1}.T^{\text{c59}_2} \left(\vec{\partial }_{\Delta }\right){}^i.A_{\Delta }^{\text{c59}_1}.\left(\vec{\partial }_{\Delta }\right){}^{-i+j}.A_{\Delta }^{\text{c59}_2}.\left(\vec{\partial }_{\Delta }\right){}^{-2-j+m}\right)\right)+\left(\vec{\partial }_{\Delta }\right){}^m
[OPEDelta, Explicit -> True] // StandardForm
CovariantD
(*RightPartialD[Momentum[OPEDelta]] - I SUNT[SUNIndex[c62]] . QuantumField[GaugeField, Momentum[OPEDelta], SUNIndex[c62]] SMP["g_s"]*)
[\[Mu], a, b, Explicit -> True] // StandardForm
CovariantD
(*RightPartialD[LorentzIndex[\[Mu]]] SUNDelta[a, b] - QuantumField[GaugeField, LorentzIndex[\[Mu]], SUNIndex[c63]] SMP["g_s"] SUNF[a, b, c63]*)