Convolute[f, g, x]
convolutes and , i.e., .
Convolute[f, g]
is equivalent to Convolute[f, g, x]
.
Convolute[exp, {x1, x2}]
assumes that exp
is polynomial in x1
and x2
. Convolute uses table-look-up and does not do any integral calculations, only linear algebra.
Overview, PlusDistribution, ConvoluteTable.
[1, 1] /. FCGV[z_] :> ToExpression[z] Convolute
[x, x] /. FCGV[z_] :> ToExpression[z] Convolute
[1, x] /. FCGV[z_] :> ToExpression[z] Convolute
[1, 1/(1 - x)] /. FCGV[z_] :> ToExpression[z] Convolute
[1, PlusDistribution[1/(1 - x)]] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), x] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), 1/(1 - x)] /. FCGV[z_] :> ToExpression[z] Convolute
[1, Log[1 - x]] /. FCGV[z_] :> ToExpression[z] Convolute
[1, x Log[1 - x]] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), Log[1 - x]] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), x Log[1 - x]] /. FCGV[z_] :> ToExpression[z] Convolute
[Log[1 - x]/(1 - x), x] /. FCGV[z_] :> ToExpression[z] Convolute
[1, x Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[Log[1 - x], x] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), Log[x]/(1 - x)] /. FCGV[z_] :> ToExpression[z] Convolute
[1, Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[x, x Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[1, Log[x]/(1 - x)] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), x Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[Log[x]/(1 - x), x] /. FCGV[z_] :> ToExpression[z] Convolute
[1, x Log[x]] /. FCGV[z_] :> ToExpression[z] Convolute
[Log[x], x] /. FCGV[z_] :> ToExpression[z] Convolute
[1/(1 - x), Log[1 - x]/(1 - x)] /. FCGV[z_] :> ToExpression[z] Convolute
[Log[1 - x]/(1 - x), Log[1 - x]] /. FCGV[z_] :> ToExpression[z] Convolute