CartesianMomentum[p] is the head of a 3-momentum
p. The internal representation of a 3-dimensional p is
CartesianMomentum[p]. For other than three dimensions:
CartesianMomentum[p, Dimension].
CartesianMomentum[p, 3] simplifies to
CartesianMomentum[p].
Overview, Momentum, TemporalMomentum.
This is a 3-dimensional momentum
CartesianMomentum[p]\overline{p}
As an optional second argument the dimension must be specified if it is different from 3
CartesianMomentum[p, D - 1]p
The dimension index is suppressed in the output.
CartesianMomentum[p, d - 1]p
a1 = CartesianMomentum[-q]-\overline{q}
a1 // StandardForm
(*-CartesianMomentum[q]*)a2 = CartesianMomentum[p - q] + CartesianMomentum[2 q]\left(\overline{p}-\overline{q}\right)+2 \overline{q}
a2 // StandardForm
(*CartesianMomentum[p - q] + 2 CartesianMomentum[q]*)a2 // MomentumExpand // StandardForm
(*CartesianMomentum[p] + CartesianMomentum[q]*)a2 // MomentumCombine // StandardForm
(*CartesianMomentum[p + q]*)Notice that when changing the dimension, one must specify its value as if the the 3-vector were the spatial component of the corresponding 4-vector
ChangeDimension[CartesianMomentum[p], d - 1] // StandardForm
(*CartesianMomentum[p, -2 + d]*)ChangeDimension[CartesianMomentum[p], d] // StandardForm
(*CartesianMomentum[p, -1 + d]*)Clear[a1, a2]