CartesianMomentum[p]
is the head of a 3-momentum p
. The internal representation of a 3-dimensional p
is CartesianMomentum[p]
. For other than three dimensions: CartesianMomentum[p, Dimension]
. CartesianMomentum[p, 3]
simplifies to CartesianMomentum[p]
.
Overview, Momentum, TemporalMomentum.
This is a 3-dimensional momentum
[p] CartesianMomentum
\overline{p}
As an optional second argument the dimension must be specified if it is different from 3
[p, D - 1] CartesianMomentum
p
The dimension index is suppressed in the output.
[p, d - 1] CartesianMomentum
p
= CartesianMomentum[-q] a1
-\overline{q}
// StandardForm
a1
(*-CartesianMomentum[q]*)
= CartesianMomentum[p - q] + CartesianMomentum[2 q] a2
\left(\overline{p}-\overline{q}\right)+2 \overline{q}
// StandardForm
a2
(*CartesianMomentum[p - q] + 2 CartesianMomentum[q]*)
// MomentumExpand // StandardForm
a2
(*CartesianMomentum[p] + CartesianMomentum[q]*)
// MomentumCombine // StandardForm
a2
(*CartesianMomentum[p + q]*)
Notice that when changing the dimension, one must specify its value as if the the 3-vector were the spatial component of the corresponding 4-vector
[CartesianMomentum[p], d - 1] // StandardForm
ChangeDimension
(*CartesianMomentum[p, -2 + d]*)
[CartesianMomentum[p], d] // StandardForm
ChangeDimension
(*CartesianMomentum[p, -1 + d]*)
Clear[a1, a2]