CGAD[i]
can be used as input for \gamma ^i in D dimensions, where i
is a Cartesian index, and is transformed into DiracGamma[CartesianIndex[i,D-1],D]
by FeynCalcInternal
.
[i] CGAD
\gamma ^i
[i, j] - CGAD[j, i] CGAD
\gamma ^i.\gamma ^j-\gamma ^j.\gamma ^i
StandardForm[FCI[CGAD[i]]]
(*DiracGamma[CartesianIndex[i, -1 + D], D]*)
[i, j, k, l] CGAD
\gamma ^i.\gamma ^j.\gamma ^k.\gamma ^l
StandardForm[CGAD[i, j, k, l]]
(*CGAD[i] . CGAD[j] . CGAD[k] . CGAD[l]*)
[DiracTrace[CGAD[i, j, k, l]]] DiracSimplify
4 \delta ^{il} \delta ^{jk}-4 \delta ^{ik} \delta ^{jl}+4 \delta ^{ij} \delta ^{kl}
[i] . (CGSD[p] + m) . CGAD[j] CGAD
\gamma ^i.(m+\gamma \cdot p).\gamma ^j