Name: Abhijit Date: 11/06/18-08:43:46 AM Z
I used Dopolariation twice while doing compton scattering.
A = DoPolarizationSums[Ma2, k, 0]
B=DoPolarizationSums[A, k’, 0]
Ma2 is compton aplitude square which was obtianed successfully.
A seems to give good result
-((e^4 tr((Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript\[CurlyEpsilon],
_).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[\[CurlyEpsilon],
_]^*(k^\[Prime])).(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma]))/(16 ((Overscript[k,
_]\[CenterDot]Overscript[p, _]))^2))-(e^4
tr((Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript\[CurlyEpsilon],
_).(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[\[CurlyEpsilon],
_]^*(k^\[Prime]))))/(16 ((Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))^2)+(e^4 tr((Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript\[CurlyEpsilon],
_).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[\[CurlyEpsilon],
_]^*(k^\[Prime]))))/(16 (Overscript[k,
_]\[CenterDot]Overscript[p, _])
(Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))+(e^4 tr((Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript\[CurlyEpsilon],
_).(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).(Overscript[\[Gamma],
_]\[CenterDot]Overscript[\[CurlyEpsilon],
_]^*(k^\[Prime])).(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma]))/(16 (Overscript[k,
_]\[CenterDot]Overscript[p, _])
(Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))
B GIVES WIERD RESULT
-((e^4 tr(-(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^$AL$13451\InvisibleApplication.(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^$AL$13451\InvisibleApplication))/(16
((Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))^2))-(e^4 tr(-(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^$AL$13449\InvisibleApplication.(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscript[\[Gamma],
_]^$AL$13449\InvisibleApplication.(Overscript[\[Gamma],
_]\CenterDot+m).Ove
rscript[\[Gamma], _]^\[Sigma]))/(16
((Overscript[k, _]\[CenterDot]Overscript[p,
_]))^2)+(e^4 tr(-(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^$AL$13453\InvisibleApplication.(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^$AL$13453\InvisibleApplication))/(16
(Overscript[k, _]\[CenterDot]Overscript[p,
_]) (Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))+(e^4 tr(-(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p,
_]+m).Overscript[\[Gamma],
_]^$AL$13455\InvisibleApplication.(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma].(Overscript[\[Gamma],
_]\[CenterDot]Overscript[p^\[Prime],
_]+m).Overscrip
t[\[Gamma],
_]^$AL$13455\InvisibleApplication.(Overscript[\[Gamma],
_]\CenterDot+m).Overscript[\[Gamma],
_]^\[Sigma]))/(16 (Overscript[k,
_]\[CenterDot]Overscript[p, _])
(Overscript[p,
_]\[CenterDot]Overscript[k^\[Prime],
_]))