Name: Maksym Date: 07/31/17-12:24:25 AM Z
Sorry, this is my inattention, I’ve just missed the dot between the gamma matrices.
I would be grateful if you’ll help me with another problem.
I have two matrix elements f1, f2:
FCClearScalarProducts[];
{ScalarProduct[p1, p1] =
ScalarProduct[p2, p2] =
ScalarProduct[p3, p3] =
ScalarProduct[k1, k1] = ScalarProduct[k2, k2] =
0};
f1 = PolarizationVector[
k2, \[Mu]] SpinorUBar[k1,
0].GA[\[Nu]].(1 - GA5).SpinorU[p1,
0] SpinorVBar[p2,
m].GA[\[Mu]].GS[
p2 - k2].GA[\[Nu]].(1 - GA5).SpinorU[p3,
m]/(ScalarProduct[p2 - k2, p2 - k2] - m^2)
f2 = PolarizationVector[
k2, \[Mu]] SpinorUBar[k1,
0].GA[\[Nu]].(1 - GA5).SpinorU[p1,
0] SpinorVBar[p2, m].GA[\[Nu]].(1 -
GA5).GS[
p3 - k2].GA[\[Mu]].SpinorU[p3,
m]/(ScalarProduct[p3 - k2, p3 - k2] - m^2)
I need to calculate their interference term. If I write
m12 = FermionSpinSum[f1 ComplexConjugate[f2] + f2 ComplexConjugate[f1]] /. DiracTrace -> TR // Contract // Simplify ,
then the output contains only 3 inequivalent summands. This contradicts the known result (there must be 7 inequivalent terms).
If, however, I directly evaluate the trace,
Expand[(Limit[
TR[ FermionSpinSum[
SpinorVBar[p2,
m].GA[\[Mu]].GS[
p2 - k2].GA[\[Nu]].(1 -
GA5).SpinorU[p3,
m].ComplexConjugate[
SpinorVBar[p2, m].GA[\[Nu]C].(1 -
GA5).GS[
p3 - k2].GA[\[Mu]].SpinorU[p3,
m]]]] TR[
FermionSpinSum[
SpinorUBar[k1, 0].GA[\[Nu]].(1 -
GA5).SpinorU[p1,
0].ComplexConjugate[
SpinorUBar[k1, 0].GA[\[Nu]C].(1 -
GA5).SpinorU[p1,
0]]]] // DiracTrick // Contract //
Simplify, m -> 0] +
ComplexConjugate[
Limit[TR[
FermionSpinSum[
SpinorVBar[p2,
m].GA[\[Mu]].GS[
p2 - k2].GA[\[Nu]].(1 -
GA5).SpinorU[p3,
m].ComplexConjugate[
SpinorVBar[p2, m].GA[\[Nu]C].(1 -
GA5).GS[
p3 - k2].GA[\[Mu]].SpinorU[p3,
m]]]] TR[
FermionSpinSum[
SpinorUBar[k1, 0].GA[\[Nu]].(1 -
GA5).SpinorU[p1,
0].ComplexConjugate[
SpinorUBar[k1, 0].GA[\[Nu]C].(1 -
GA5).SpinorU[p1,
0]]]] // DiracTrick // Contract //
Simplify,
m -> 0]]) // Simplify]
then the output contains 7 inequivalent terms with correct factors. What is the reason for this?