Name: Vladyslav Shtabovenko Date: 01/17/17-10:28:42 AM Z


Your opinion is correct and agrees with what the current FeynCalc version returns

OneLoop[q1,
 FAD[{q1, MG}, {p3 + q1, MB}, {p3 + p4 + q1, MT}] FVD[q1, mu]]

-I \[Pi]^2 (C0[SP[p3, p3], SP[p4, p4],
     SP[p3, p3] + 2 SP[p3, p4] + SP[p4, p4], MG^2, MB^2, MT^2] FV[p3,
     mu] + FV[p3, mu] PaVe[
     1, {SP[p3, p3], SP[p3, p3] + 2 SP[p3, p4] + SP[p4, p4],
      SP[p4, p4]}, {MB^2, MG^2, MT^2}, PaVeAutoOrder -> True,
     PaVeAutoReduce -> True] -
   FV[p4, mu] PaVe[
     2, {SP[p3, p3], SP[p3, p3] + 2 SP[p3, p4] + SP[p4, p4],
      SP[p4, p4]}, {MB^2, MG^2, MT^2}, PaVeAutoOrder -> True,
     PaVeAutoReduce -> True])
 
Nonetheless, I added this example to our test suite.

Cheers,
Vladyslav

> I have a little problem with PaVe function. Consider the follow
>
> fd = Pair[LorentzIndex[\[Mu]1], Momentum[q1]]*
> FeynAmpDenominator[PropagatorDenominator[Momentum[q1, D], MG],
> PropagatorDenominator[Momentum[p3, MB] + Momentum[q1, D], MB],
> PropagatorDenominator[
> Momentum[p3, D] + Momentum[p4, D] + Momentum[q1, D], MT]]
>
> res2 = OneLoop[q1, fd]
>
> I*Pi^2*(Pair[LorentzIndex[\[Mu]1], Momentum[p3]]*
> PaVe[1, {Pair[Momentum[p3], Momentum[p3]] + 2*Pair[Momentum[p3], Momentum[p4]] +
> Pair[Momentum[p4], Momentum[p4]], Pair[Momentum[p4], Momentum[p4]],
> Pair[Momentum[p3], Momentum[p3]]}, {MG^2, MT^2, MB^2}] +
> Pair[LorentzIndex[\[Mu]1], Momentum[p4]]*
> PaVe[1, {Pair[Momentum[p3], Momentum[p3]] + 2*Pair[Momentum[p3], Momentum[p4]] +
> Pair[Momentum[p4], Momentum[p4]], Pair[Momentum[p4], Momentum[p4]],
> Pair[Momentum[p3], Momentum[p3]]}, {MG^2, MT^2, MB^2}] +
> Pair[LorentzIndex[\[Mu]1], Momentum[p3]]*
> PaVe[2, {Pair[Momentum[p3], Momentum[p3]] + 2*Pair[Momentum[p3], Momentum[p4]] +
> Pair[Momentum[p4], Momentum[p4]], Pair[Momentum[p4], Momentum[p4]],
> Pair[Momentum[p3], Momentum[p3]]}, {MG^2, MT^2, MB^2}])
>
> the result, in a form for the eye roughly, is
>
> p3*PaVe(1, etc)+p3*PaVe(2,etc)+p4*PaVe(1,etc), with the same etc for
> all. In my opinion should be p4*PaVe(2,etc) and only one term for
> p3, or in other words , p3*PaVe(1,etc)+p3*PaVe(1,etc).
> p3=p3^(mu)
>
> Sorry if my question does not make sense.