Name: Vladyslav Shtabovenko Date: 08/13/15-10:12:12 PM Z


This is another example that calls for TensorFunction

LC2sh[x_, y_] := TensorFunction[{LC2, “A”}, x, y]

res = (Tr[
      GS[p].GA[\[Mu]].(x2*GS[p] + GS[q]).GA[\[Beta]].(x*GS[p] +
         GS[q]).GA[\[Alpha]].(x1*GS[p]

-> 2 (x x1 FV[p, \[Mu]] FV[p, \[Nu]]

>
>
> Okay so now I’m having the opposite problem, its not throwing out symmetric terms. For example:
>
> In: FV[p, LorentzIndex[a]] FV[p, LorentzIndex[b]] Eps[a, b]
>
> Out: p^a p^b \[Epsilon]^(a b)
>
> In: Contract[%]
>
> Out: p^a p^b \[Epsilon]^(a b)
>
> In: Simplify[%]
>
> Out: p^a p^b \[Epsilon]^(a b)
>
> In: Calc[%]
>
> Out: p^a p^b \[Epsilon]^(a b)
>
> And in my actual calculation:
>
> In: tr1=Calc[Contract[Tr[GS[p].GA[\[Mu]].(x2*GS[p]+GS[q]).GA[\[Beta]].(x*GS[p]+GS[q]).GA[\[Alpha]].(x1*GS[p]+GS[q]).GA[\[Nu]]]*LC[\[Alpha],\[Beta]]]/8]
>
> Out: -((LeviCivita(\[Alpha], \[Beta], Dimension -> 4) g^(\[Alpha] \[Nu])
> g^(\[Beta] \[Mu]) Q^4)/(4 xb)) + … -((LeviCivita(\[Alpha], \[Beta], Dimension -> 4) g^(\[Alpha] \[Beta])
> g^(\[Mu] \[Nu]) Q^4)/(4 xb)) + …
>
> Where the second term is zero and …’s represent the numerous terms I left out
>
> I feel I’m missing some basic thing here that’s holding me back seeing as I’ve had this work properly in the past in different situations.