Name: Lingxiao Xu Date: 12/21/14-05:32:13 PM Z


In my previous message, I’ve made two small mistakes.
1)I should use PaVeReduce before “div” substitution, namely
ans = -I/Pi^2 (OneLoop[q, amp1 + amp2 + amp3] /. onshell //
       PaVeReduce) /. div // Simplify;
2)further need to define sp[p1, p2] -> (m1^2 + m2^2)/2 in “onshell”.
then the result is zero.

However, I just made some modification in the amplitude with the relation p2=p1+k, then the result is not zero.

In[2]:= (*some shorthands*)
dm[mu_] := DiracMatrix[mu, Dimension -> D]
ds[p_] := DiracSlash[p]
gA := I (AL dm[7] + AR dm[6])(*lepton scalar fermion Yukawa vertex*)
gB := I (BL dm[7] + BR dm[6])(*fermion scalar lepton Yukawa vertex*)
sp[p_, q_] := ScalarProduct[p, q]

In[7]:= onshell = {sp[p1, p1] -> m1^2, sp[p2, p2] -> m2^2,
   sp[k, k] -> 0, sp[k, p1] -> (m2^2 - m1^2)/2,
   sp[k, p2] -> (m2^2 - m1^2)/2, sp[p1, p2] -> (m1^2 + m2^2)/2,
   sp[p1, Polarization[k]] -> p2epk, sp[p2, Polarization[k]] -> p2epk};

In[8]:= div = {B0[m1^2, mf^2, ms^2] -> Div,
   B0[m2^2, mf^2, ms^2] -> Div, B0[0, mf^2, ms^2] -> Div,
   B0[0, mf^2, mf^2] -> Div, B0[0, ms^2, ms^2] -> Div};

In[9]:= num1 =
  SpinorUBar[p1, m1].gA.(ds[q + p2 - k] + mf).ds[
     Polarization[k]].(ds[q + p2] + mf).gB.SpinorU[p2, m2] // FCI;
amp1 = num1 FeynAmpDenominator[PropagatorDenominator[q + p2 - k, mf],
   PropagatorDenominator[q + p2, mf], PropagatorDenominator[q, ms]]

num2 = SpinorUBar[p1,
    m1].gA.(ds[q + p2 - k] + mf).gB.(ds[p1] + m2).ds[
    Polarization[k]].SpinorU[p2, m2] // FCI; amp2 =
 num2 FeynAmpDenominator[PropagatorDenominator[q + p1, mf],
   PropagatorDenominator[p2 - k, m2], PropagatorDenominator[q, ms]]

num3 = SpinorUBar[p1, m1].ds[
     Polarization[k]].(ds[p2] + m1).gA.(ds[q + p2] + mf).gB.SpinorU[
     p2, m2] // FCI;
amp3 = num3 FeynAmpDenominator[PropagatorDenominator[p2, m1],
   PropagatorDenominator[q + p2, mf], PropagatorDenominator[q, ms]]
SetOptions[OneLoop, Dimension -> D];
ans = -I/Pi^2 (OneLoop[q, amp1 + amp2 + amp3] /. onshell //
       PaVeReduce) /. div // Simplify;
test = Coefficient[ans, Div] // Simplify

Out[10]= \CurlyPhi.(I (AL \[Gamma]^7+AR \[Gamma]^6)).(\[Gamma]\CenterDot+mf).(\[Gamma]\[CenterDot]\CurlyEpsilon).(mf+\[Gamma]\CenterDot).(I (BL \[Gamma]^7+BR \[Gamma]^6)).\CurlyPhi/((-k+p2+q)^2-mf^2).((p2+q)^2-mf^2).(q^2-ms^2)

Out[11]= \CurlyPhi.(I (AL \[Gamma]^7+AR \[Gamma]^6)).(\[Gamma]\CenterDot+mf).(I (BL \[Gamma]^7+BR \[Gamma]^6)).(m2+\[Gamma]\[CenterDot]p1).(\[Gamma]\[CenterDot]\CurlyEpsilon).\CurlyPhi/((p1+q)^2-mf^2).((p2-k)^2-m2^2).(q^2-ms^2)

Out[13]= \CurlyPhi.(\[Gamma]\[CenterDot]\CurlyEpsilon).(m1+\[Gamma]\[CenterDot]p2).(I (AL \[Gamma]^7+AR \[Gamma]^6)).(mf+\[Gamma]\CenterDot).(I (BL \[Gamma]^7+BR \[Gamma]^6)).\CurlyPhi/(p2^2-m1^2).((p2+q)^2-mf^2).(q^2-ms^2)

Out[16]= (1/(m1^2-m2^2))(2 (AR BL m1-AL BR m2) \[LeftDoubleBracketingBar]p2epk \CurlyPhi.\[Gamma]^7.\CurlyPhi\[RightDoubleBracketingBar]+2 (AL BR m1-AR BL m2) \[LeftDoubleBracketingBar]p2epk \CurlyPhi.\[Gamma]^6.\CurlyPhi\[RightDoubleBracketingBar]-AL BR m1^2 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^6.\CurlyPhi\[RightDoubleBracketingBar]+AL BR m2^2 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^6.\CurlyPhi\[RightDoubleBracketingBar]+AL BR m2 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]k).(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^7.\CurlyPhi\[RightDoubleBracketingBar]-AL BR m1 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]k).(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^6.\CurlyPhi\[RightDoubleBracketingBar]-AR BL m1^2 \[LeftDoubleBracketingBar]\CurlyP
 hi
.(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^7.\CurlyPhi\[RightDoubleBracketingBar]+AR BL m2^2 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^7.\CurlyPhi\[RightDoubleBracketingBar]-AR BL m1 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]k).(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^7.\CurlyPhi\[RightDoubleBracketingBar]+AR BL m2 \[LeftDoubleBracketingBar]\CurlyPhi.(\[Gamma]\[CenterDot]k).(\[Gamma]\[CenterDot]\CurlyEpsilon).\[Gamma]^6.\CurlyPhi\[RightDoubleBracketingBar])

Regards,
Lingxiao