Name: Lingxiao Xu Date: 11/03/14-05:40:00 AM Z
hi,recently I’ve calculated some QCD processes using
FeynCalc.Here comes my questions: firstly, the result of the process
“quark,quarkbar to quark,quarkbar” obtained by FeynCalc is
wrong.Secondly,when calculating the process of quark gluon scattering,
the commmand “Contract” seems not working right. There is still Lorentz
indexes after using it.
Here are my Codes for two processes:
Q,Qbar to Q,Qbar:
Quit;
«HighEnergyPhysics`FeynCalc`
ClearScalarProducts;
{ScalarProduct[p1, p1] =
ScalarProduct[p2, p2] =
ScalarProduct[p3, p3] = ScalarProduct[p4, p4] = 0,
ScalarProduct[p1, p2] = ScalarProduct[p3, p4] = s/2,
ScalarProduct[p1, p3] = ScalarProduct[p2, p4] =
-t/2,
ScalarProduct[p1, p4] = ScalarProduct[p2, p3] = -u/2
};
ScPr[p_, m_] := -I/(ScalarProduct[p] - m^2) //
ExpandScalarProduct;
ftrace = {DiracTrace -> Tr2, D -> 4};
SUNN = 3;
SetOptions[SUNSimplify, SUNNToCACF -> False];
qav = 6;
f1 = SpinorVBar[p2, 0].QGV[\[Alpha],
k].SpinorU[p1, 0] ScPr[p1 + p2,
0] SpinorUBar[p3, 0].QGV[\[Alpha],
k].SpinorV[p4, 0] // Explicit;
f2 = SpinorUBar[p3, 0].QGV[\[Alpha],
k].SpinorU[p1, 0] ScPr[p1 - p3,
0] SpinorVBar[p2, 0].QGV[\[Alpha],
k].SpinorV[p4, 0] // Explicit;
f = f1 + f2
f1s = SpinorUBar[p1, 0].QGV[\[Beta],
l].SpinorV[p2,
0] (-ScPr[p1 + p2, 0]) SpinorVBar[p4,
0].QGV[\[Beta],
l].SpinorU[p3, 0] // Explicit;
f2s = SpinorUBar[p1, 0].QGV[\[Beta],
l].SpinorU[p3,
0] (-ScPr[p1 - p3, 0]) SpinorVBar[p4,
0].QGV[\[Beta],
l].SpinorV[p2, 0] // Explicit;
fstar = f1s + f2s
Msq = FermionSpinSum[
f fstar // Explicit // Expand]/(qav^2 Gstrong^4) /. ftrace
//
Contract // Simplify // SUNSimplify // Expand
standard = 4/9 ((s^2 + u^2)/t^2 + (u^2 + t^2)/s^2 - 2/3 u^2/(s t))
TrickMandelstam[Msq - standard, {s, t, u, 0}]
Quark Gluon Scattering:
Quit[];
«HighEnergyPhysics`FeynCalc`
ClearScalarProducts;
{
ScalarProduct[p1, p1] =
ScalarProduct[p2, p2] =
ScalarProduct[p3, p3] = ScalarProduct[p4, p4] = 0,
ScalarProduct[p1, p2] = ScalarProduct[p3, p4] = s/2,
ScalarProduct[p1, p3] = ScalarProduct[p2, p4] =
-t/2,
ScalarProduct[p1, p4] = ScalarProduct[p2, p3] = -u/2
};
QPr[p_, m_] :=
I (DiracSlash[p] + m)/(ScalarProduct[p] - m^2) //
ExpandScalarProduct;
SUNN = 3;
SetOptions[SUNSimplify, SUNNToCACF -> False];
{qav = 6, gav = 16, eav = 2};
ftrace := {DiracTrace -> Tr2, D -> 4};
f1munu = SpinorUBar[p3, 0].QGV[\[Nu],
j].QPr[p1 + p2, 0].QGV[\[Mu],
i].SpinorU[p1, 0] // Explicit
f2munu = SpinorUBar[p3, 0].QGV[\[Mu],
i].QPr[p1 - p4, 0].QGV[v,
j].SpinorU[p1, 0] // Explicit
fmunu = f1munu + f2munu;
f1s = -SpinorUBar[p1, 0].QGV[\[Rho],
i].QPr[p1 + p2, 0].QGV[\[Sigma],
j].SpinorU[p3, 0] // Explicit
f2s = -SpinorUBar[p1, 0].QGV[\[Sigma],
j].QPr[p1 - p4, 0].QGV[\[Rho],
i].SpinorU[p3, 0] // Explicit
fmunus = f1s + f2s;
Pols = PolarizationSum[\[Mu], \[Rho], p2,
p1] PolarizationSum[\[Nu], \[Sigma], p4,
p3]
Msqmunu = FermionSpinSum[fmunu fmunus /(gav qav) // Expand]
SUNSimplify[SUNTrace[%], Explicit -> True]
% /. DiracTrace -> TR;
Msq = Pols % // Contract // Simplify
I’m appreciate for the help,cheers!