Name: L.X. Xu Date: 10/12/14-07:45:05 PM Z
hi,
I am using feynarts and feyncalc to calculate the process:
e+e-annihilation into a pair of photon. When I am doing the polarization
sum of final state photon, I just replace the polarization vector by
metric tensor,here is the mathematica code for this process:
Quit[];
$LoadPhi = True;
$LoadFeynArts = True;
$Configuration = “QED”;
$Lagrangians = {“QED”[1], “QED”[2]};
«HighEnergyPhysics`Feyncalc`
SetOptions[FourVector, FeynCalcInternal -> False];
tops = CreateTopologies[0, 2 -> 2];
Paint[tops, AutoEdit -> False, ColumnsXRows -> {4, 1}];
inserttops =
InsertFields[tops, {F[2, {1}], -F[2, {1}]} ->
{V[1], V[1]},
InsertionLevel -> {Classes}, LastSelections -> {F[2,
{1}]}];
Paint[inserttops, AutoEdit -> False, ColumnsXRows -> {3,
1}];
M20 = CreateFCAmp[inserttops] /. {ME -> me, EL -> e} //
Total
M21 = ComplexConjugate[M20] /. {\[Mu]1 -> m1,
\[Mu]2 -> m2}
M22 = M20*M21 // Expand
M23 = M22 /.
Pair[LorentzIndex[m1, D],
Momentum[Polarization[p3, I], D]] Pair[
LorentzIndex[m2, D], Momentum[Polarization[p4,
I], D]] Pair[
LorentzIndex[\[Mu]1, D],
Momentum[Polarization[p3, -I], D]] Pair[
LorentzIndex[\[Mu]2, D],
Momentum[Polarization[p4, -I], D]] ->
Pair[LorentzIndex[m1, D],
LorentzIndex[\[Mu]1, D]] Pair[
LorentzIndex[m2, D], LorentzIndex[\[Mu]2,
D]]
M24 = 1/4*FermionSpinSum[M23] // Contract
M25 = M24 /. DiracTrace -> TR // Simplify
M26 = M25 /. {Pair[Momentum[p2], Momentum[p2]]
-> me^2,
Pair[Momentum[p3], Momentum[p3]] -> 0,
Pair[Momentum[p4], Momentum[p4]] -> 0,
PropagatorDenominator[Momentum[p2, D] + Momentum[p3,
D], me] ->
1/(2 Pair[Momentum[p2], Momentum[p3]]),
PropagatorDenominator[Momentum[p2, D] + Momentum[p4,
D], me] ->
1/(2 Pair[Momentum[p2], Momentum[p4]])}
M27 = M26 /. {Pair[Momentum[p2], Momentum[p3]]
->
Pair[Momentum[p1], Momentum[p4]],
Pair[Momentum[p2], Momentum[p4]] ->
Pair[Momentum[p1], Momentum[p3]],
Pair[Momentum[p3], Momentum[p4]] ->
Pair[Momentum[p1], Momentum[p2]] + me^2}
M28 = M27 /.
Pair[Momentum[p1],
Momentum[p2]] -> -Pair[Momentum[p1],
Momentum[p4]] -
Pair[Momentum[p1], Momentum[p3]] - me^2 //
Expand
M29 = M28 /. {Pair[Momentum[p1],
Momentum[p3]] -> -Pair[Momentum[p1],
Momentum[k1]],
Pair[Momentum[p1],
Momentum[p4]] -> -Pair[Momentum[p1],
Momentum[k2]]}
I am wondering why the final result differ by an overall minus sign from Peskin and if there are any better way to perform the whole process???
Thanks for Help!!!!!!!!!