Name: Carina Zanetti Date: 08/23/11-11:53:21 PM Z


I have different results when I calculate some traces if I use Mathematica
5.2 or Mathematica 8.

For example when I calculate the following trace:

DS = DiracSigma[GA[k], GA[l]];
Simplify[TR[Contract[(DS.(GS[k - p] + m) + (GS[k

The output in Mathematica 5.2 is the following:

********************************Mathematica
5.2************************************************
\!\(16\ \[ImaginaryI]\ \((\(-3\)
Eps[LorentzIndex[c], Momentum[
            k], Momentum[p], Momentum[y]]
Pair[LorentzIndex[a], \
LorentzIndex[b]] +
            Eps[LorentzIndex[b], Momentum[k], Momentum[
              p], Momentum[y]]
Pair[LorentzIndex[a], LorentzIndex[c]] + 6\
\
Eps[LorentzIndex[b], LorentzIndex[c],
            Momentum[k], Momentum[y]]\
              Pair[LorentzIndex[a], Momentum[k]]

And the output using Mathematica 8 is:

*************************Mathematica
8*************************************************************
16 I (-3 Eps[LorentzIndex[c], Momentum[k], Momentum[p],
     Momentum[y]] Pair[LorentzIndex[a], LorentzIndex[b]] +
   3 Eps[LorentzIndex[b], Momentum[k], Momentum[p], Momentum[y]] Pair[
     LorentzIndex[a], LorentzIndex[c]] +
   6 Eps[LorentzIndex[b], LorentzIndex[c], Momentum[k],
     Momentum[y]] Pair[LorentzIndex[a], Momentum[k]] -
   3 Eps[LorentzIndex[b], LorentzIndex[c], Momentum[p],
     Momentum[y]] Pair[LorentzIndex[a], Momentum[k]] -
   5 Eps[LorentzIndex[b], LorentzIndex[c], Momentum[k],
     Momentum[y]] Pair[LorentzIndex[a], Momentum[p]] -
   3 Eps[LorentzIndex[b], LorentzIndex[c], Momentum[k],
     Momentum[p]] Pair[LorentzIndex[a], Momentum[y]] -
   3 Eps[LorentzIndex[a], Momentum[k], Momentum[p], Momentum[y]] Pair[
     LorentzIndex[b], LorentzIndex[c]] -
   3 Eps[LorentzIndex[a], LorentzIndex[c], Momentum[p],
     Momentum[y]] Pair[LorentzIndex[b], Momentum[k]] +
   5 Eps[LorentzIndex[a], LorentzIndex[c], Momentum[k],
     Momentum[y]] Pair[LorentzIndex[b], Momentum[p]] +
   3 Eps[LorentzIndex[a], LorentzIndex[c], Momentum[k],
     Momentum[p]] Pair[LorentzIndex[b], Momentum[y]] +
   3 Eps[LorentzIndex[a], LorentzIndex[b], Momentum[p],
     Momentum[y]] Pair[LorentzIndex[c], Momentum[k]] -
   5 Eps[LorentzIndex[a], LorentzIndex[b], Momentum[k],
     Momentum[y]] Pair[LorentzIndex[c], Momentum[p]] +
   3 Eps[LorentzIndex[a], LorentzIndex[b], Momentum[k],
     Momentum[p]] Pair[LorentzIndex[c], Momentum[y]] +
   Eps[LorentzIndex[a], LorentzIndex[b], LorentzIndex[c],
     Momentum[y]] (6 m^2 - 3 Pair[Momentum[k], Momentum[k]] +
      5 Pair[Momentum[k], Momentum[p]]) +
   3 Eps[LorentzIndex[a], LorentzIndex[b], LorentzIndex[c],
     Momentum[p]] Pair[Momentum[k], Momentum[y]] -
   5 Eps[LorentzIndex[a], LorentzIndex[b], LorentzIndex[c],
     Momentum[k]] Pair[Momentum[p], Momentum[y]])
******************************************************************************************************