Yukawa manual (development version)

Load FeynCalc and the necessary add-ons or other packages

This example uses a custom QED model created with FeynRules. Please evaluate the file FeynCalc/Examples/FeynRules/QED/GenerateModelYukawa.m before running it for the first time.

description = "Renormalization, Yukawa, MS and MSbar, 1-loop";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[10, 0, 0];

FeynCalc   10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the online  documentation,   visit the forum   and have a look at the supplied examples.   The PDF-version of the manual can be downloaded here.\text{FeynCalc }\;\text{10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the }\underline{\text{online} \;\text{documentation},}\;\text{ visit the }\underline{\text{forum}}\;\text{ and have a look at the supplied }\underline{\text{examples}.}\;\text{ The PDF-version of the manual can be downloaded }\underline{\text{here}.}

If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

FeynArts   3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual   or visit www.feynarts.de.\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

If you use FeynArts in your research, please cite\text{If you use FeynArts in your research, please cite}

  T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Configure some options

We keep scaleless B0 functions, since otherwise the UV part would not come out right.

$KeepLogDivergentScalelessIntegrals = True;
FAPatch[PatchModelsOnly -> True];

(*Patched 4 FeynArts models.*)

Generate Feynman diagrams

params = {InsertionLevel -> {Particles}, Model -> FileNameJoin[{"LY", "LY"}], 
    GenericModel -> FileNameJoin[{"LY", "LY"}], ExcludeParticles -> {}};
top[i_, j_] := CreateTopologies[1, i -> j, 
    ExcludeTopologies -> {Tadpoles, WFCorrections, WFCorrectionCTs}];
topCT[i_, j_] := CreateCTTopologies[1, i -> j, 
     ExcludeTopologies -> {Tadpoles, WFCorrections, WFCorrectionCTs}]; 
 
{diagFermionSE, diagFermionSECT} = InsertFields[#, {F[10]} -> {F[10]}, 
      Sequence @@ params] & /@ {top[1, 1], topCT[1, 1]};
{diagScalarSE, diagScalarSECT} = InsertFields[#, {S[1]} -> {S[1]}, 
      Sequence @@ params] & /@ {top[1, 1], topCT[1, 1]};
{diagVertexFFS, diagVertexFFSCT} = InsertFields[#,  {F[10], S[1]} -> {F[10]}, 
      Sequence @@ params] & /@ {top[2, 1], topCT[2, 1]};
{diagVertexSSSS, diagVertexSSSSCT} = InsertFields[#,  {S[1], S[1]} -> {S[1], S[1]}, 
      Sequence @@ params] & /@ {top[2, 2], topCT[2, 2]};
diag1[0] = diagFermionSE[[0]][diagFermionSE[[1]], diagFermionSECT[[1]]];
diag2[0] = diagScalarSE[[0]][diagScalarSE[[1]], diagScalarSECT[[1]]];
diag3[0] = diagVertexFFS[[0]][diagVertexFFS[[1]], diagVertexFFSCT[[1]]];
diag4[0] = diagVertexSSSS[[0]][diagVertexSSSS[[1]], diagVertexSSSSCT[[1]]];
Paint[diag1[0], ColumnsXRows -> {2, 1}, SheetHeader -> None, 
   Numbering -> Simple, ImageSize -> 256 {2, 1}];

0f0jiq05y6868

Paint[diag2[0], ColumnsXRows -> {2, 1}, SheetHeader -> None, 
   Numbering -> Simple, ImageSize -> 256 {2, 1}];

1g0ppesv184of

Paint[diag3[0], ColumnsXRows -> {2, 1}, SheetHeader -> None, 
   Numbering -> Simple, ImageSize -> 256 {2, 1}];

1nolf6xwdpe1a

Paint[diag4[0], ColumnsXRows -> {3, 1}, SheetHeader -> None, 
   Numbering -> Simple, ImageSize -> 256 {3, 1}];

101xx4gtoi8zd

Obtain the amplitudes

The 1/(2Pi)^D prefactor is implicit.

Fermion self-energy including the counter-term

amp1[0] = FCFAConvert[CreateFeynAmp[diag1[0], Truncated -> True, 
    GaugeRules -> {}, PreFactor -> 1], 
    IncomingMomenta -> {p}, OutgoingMomenta -> {p}, 
    LoopMomenta -> {l}, UndoChiralSplittings -> True, 
    ChangeDimension -> D, List -> False, SMP -> True, 
    FinalSubstitutions -> {}, Contract -> True]

(ig).(γl+Mx).(ig)(l2Mx2).((lp)2Mphi2ξS(1))i  Mx(Zmx  Zx1)+i(Zx1)γp-\frac{(-i g).(\gamma \cdot l+\text{Mx}).(-i g)}{\left(l^2-\text{Mx}^2\right).\left((l-p)^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i \;\text{Mx} (\text{Zmx} \;\text{Zx}-1)+i (\text{Zx}-1) \gamma \cdot p

Scalar self-energy including the counter-term

amp2[0] = FCFAConvert[CreateFeynAmp[diag2[0], Truncated -> True, 
    GaugeRules -> {}, PreFactor -> 1], 
    IncomingMomenta -> {p}, OutgoingMomenta -> {p}, 
    LoopMomenta -> {l}, UndoChiralSplittings -> True, 
    ChangeDimension -> D, List -> False, SMP -> True, Contract -> True]

la2(l2Mphi2ξS(1))i  Mphi2(Zmphi  Zphi1)+ip2(Zphi1)\frac{\text{la}}{2 \left(l^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i \;\text{Mphi}^2 (\text{Zmphi} \;\text{Zphi}-1)+i p^2 (\text{Zphi}-1)

Fermion-scalar vertex including the counter-term

amp3[0] = FCFAConvert[CreateFeynAmp[diag3[0], Truncated -> True, 
    GaugeRules -> {}, PreFactor -> 1], 
    IncomingMomenta -> {p1, k}, OutgoingMomenta -> {p2}, 
    LoopMomenta -> {l}, UndoChiralSplittings -> True, ChangeDimension -> D, 
    List -> False, SMP -> True, Contract -> True]

i(ig).(γ(k+l)+Mx).(ig).(γl+Mx).(ig)(l2Mx2).((k+l)2Mx2).((k+lp2)2Mphi2ξS(1))ig(ZgZphi  Zx1)-\frac{i (-i g).(\gamma \cdot (k+l)+\text{Mx}).(-i g).(\gamma \cdot l+\text{Mx}).(-i g)}{\left(l^2-\text{Mx}^2\right).\left((k+l)^2-\text{Mx}^2\right).\left((k+l-\text{p2})^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i g \left(\text{Zg} \sqrt{\text{Zphi}} \;\text{Zx}-1\right)

Scalar self-interaction vertex including the counter-term

amp4[0] = FCFAConvert[CreateFeynAmp[diag4[0], Truncated -> True, 
    GaugeRules -> {}, PreFactor -> 1], 
    IncomingMomenta -> {p1, p2}, OutgoingMomenta -> {p3, p4}, 
    LoopMomenta -> {l}, UndoChiralSplittings -> True, ChangeDimension -> D, 
    List -> False, SMP -> True, Contract -> True]

2  tr((Mxγl).(ig).(γ(lp2)+Mx).(ig).(γ(lp2+p4)+Mx).(ig).(γ(lp2+p3+p4)+Mx).(ig))(l2Mx2).((l+p2)2Mx2).((l+p2p4)2Mx2).((l+p2p3p4)2Mx2)i  la(Zla  Zphi21)-\frac{2 \;\text{tr}((\text{Mx}-\gamma \cdot l).(-i g).(\gamma \cdot (-l-\text{p2})+\text{Mx}).(-i g).(\gamma \cdot (-l-\text{p2}+\text{p4})+\text{Mx}).(-i g).(\gamma \cdot (-l-\text{p2}+\text{p3}+\text{p4})+\text{Mx}).(-i g))}{\left(l^2-\text{Mx}^2\right).\left((l+\text{p2})^2-\text{Mx}^2\right).\left((l+\text{p2}-\text{p4})^2-\text{Mx}^2\right).\left((l+\text{p2}-\text{p3}-\text{p4})^2-\text{Mx}^2\right)}-i \;\text{la} \left(\text{Zla} \;\text{Zphi}^2-1\right)

Calculate the amplitudes

Fermion self-energy

amp1[1] = amp1[0] // ReplaceAll[#, {Zx -> 1 + alpha dZx, 
         Zmx -> 1 + alpha dZmx}] & // Series[#, {alpha, 0, 1}] & // 
    Normal // ReplaceAll[#, alpha -> 1] &

(ig).(γl+Mx).(ig)(l2Mx2).((lp)2Mphi2ξS(1))i  Mx(dZmx+dZx)+i  dZxγp-\frac{(-i g).(\gamma \cdot l+\text{Mx}).(-i g)}{\left(l^2-\text{Mx}^2\right).\left((l-p)^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i \;\text{Mx} (\text{dZmx}+\text{dZx})+i \;\text{dZx} \gamma \cdot p

Tensor reduction allows us to express the electron self-energy in tems of the Passarino-Veltman coefficient functions.

amp1[2] = TID[amp1[1], l, ToPaVe -> True]

iπ2g2(γp(Mphi2(ξS(1))+Mx2+p2)+2  Mxp2)  B0(p2,Mx2,Mphi2ξS(1))2p2+iπ2g2γp  A0(Mphi2ξS(1))2p2iπ2g2  A0(Mx2)γp2p2i(dZmx  Mx+dZx  MxdZxγp)\frac{i \pi ^2 g^2 \left(\gamma \cdot p \left(\text{Mphi}^2 \left(-\xi _{S(1)}\right)+\text{Mx}^2+p^2\right)+2 \;\text{Mx} p^2\right) \;\text{B}_0\left(p^2,\text{Mx}^2,\text{Mphi}^2 \xi _{S(1)}\right)}{2 p^2}+\frac{i \pi ^2 g^2 \gamma \cdot p \;\text{A}_0\left(\text{Mphi}^2 \xi _{S(1)}\right)}{2 p^2}-\frac{i \pi ^2 g^2 \;\text{A}_0\left(\text{Mx}^2\right) \gamma \cdot p}{2 p^2}-i (\text{dZmx} \;\text{Mx}+\text{dZx} \;\text{Mx}-\text{dZx} \gamma \cdot p)

Discard all the finite pieces of the 1-loop amplitude

amp1Div[0] = PaVeUVPart[amp1[2], Prefactor -> 1/(2 Pi)^D] // 
         FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal // 
      FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], dZx, 
        dZmx}] & // Simplify // Collect2[#, DiracGamma] &

i(32π2  dZx+Δg2)γp32π2i  Mx(16π2  dZmx+16π2  dZxΔg2)16π2\frac{i \left(32 \pi ^2 \;\text{dZx}+\Delta g^2\right) \gamma \cdot p}{32 \pi ^2}-\frac{i \;\text{Mx} \left(16 \pi ^2 \;\text{dZmx}+16 \pi ^2 \;\text{dZx}-\Delta g^2\right)}{16 \pi ^2}

Equating the result to zero and solving for dZx and dZmx we obtain the renormalization constants in the minimal subtraction schemes.

solMSbar1 = FCMatchSolve[amp1Div[0], {g, la, Mx, DiracGamma, SMP}];
solMS1 = solMSbar1 /. SMP["Delta"] -> 1/Epsilon

FCMatchSolve: Solving for: {dZmx,dZx}\text{FCMatchSolve: Solving for: }\{\text{dZmx},\text{dZx}\}

FCMatchSolve: A solution exists.\text{FCMatchSolve: A solution exists.}

{dZmx3g232π2ε,dZxg232π2ε}\left\{\text{dZmx}\to \frac{3 g^2}{32 \pi ^2 \varepsilon },\text{dZx}\to -\frac{g^2}{32 \pi ^2 \varepsilon }\right\}

Scalar self-energy

amp2[0]

la2(l2Mphi2ξS(1))i  Mphi2(Zmphi  Zphi1)+ip2(Zphi1)\frac{\text{la}}{2 \left(l^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i \;\text{Mphi}^2 (\text{Zmphi} \;\text{Zphi}-1)+i p^2 (\text{Zphi}-1)

amp2[1] = amp2[0] // ReplaceRepeated[#, {Zphi -> 1 + alpha dZphi, 
         Zmphi -> 1 + alpha dZmphi}] & // Series[#, {alpha, 0, 1}] & //
    Normal // ReplaceAll[#, alpha -> 1] &

la2(l2Mphi2ξS(1))i  Mphi2(dZmphi+dZphi)+i  dZphip2\frac{\text{la}}{2 \left(l^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i \;\text{Mphi}^2 (\text{dZmphi}+\text{dZphi})+i \;\text{dZphi} p^2

Tensor reduction allows us to express the scalar self-energy in tems of the Passarino-Veltman coefficient functions.

amp2[2] = TID[amp2[1], l, ToPaVe -> True]

12iπ2  la  A0(Mphi2ξS(1))i(dZmphi  Mphi2+dZphi  Mphi2dZphip2)\frac{1}{2} i \pi ^2 \;\text{la} \;\text{A}_0\left(\text{Mphi}^2 \xi _{S(1)}\right)-i \left(\text{dZmphi} \;\text{Mphi}^2+\text{dZphi} \;\text{Mphi}^2-\text{dZphi} p^2\right)

Discard all the finite pieces of the 1-loop amplitude

amp2Div[0] = PaVeUVPart[amp2[2], Prefactor -> 1/(2 Pi)^D] // 
         FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal // 
      FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], dZphi, dZmphi}] & // Simplify // 
   Collect2[#, p, Mphi] &

i  dZphip2i  Mphi2(32π2  dZmphi+32π2  dZphiΔ  laξS(1))32π2i \;\text{dZphi} p^2-\frac{i \;\text{Mphi}^2 \left(32 \pi ^2 \;\text{dZmphi}+32 \pi ^2 \;\text{dZphi}-\Delta \;\text{la} \xi _{S(1)}\right)}{32 \pi ^2}

Equating this to zero and solving for dZphi and dZmphi obtain the renormalization constants in the minimal subtraction schemes.

solMSbar2 = FCMatchSolve[amp2Div[0], {g, la, Mphi, p, SMP, GaugeXi}]
solMS2 = solMSbar2 /. SMP["Delta"] -> 1/Epsilon;

FCMatchSolve: Following coefficients trivially vanish: {dZphi0}\text{FCMatchSolve: Following coefficients trivially vanish: }\{\text{dZphi}\to 0\}

FCMatchSolve: Solving for: {dZmphi}\text{FCMatchSolve: Solving for: }\{\text{dZmphi}\}

FCMatchSolve: A solution exists.\text{FCMatchSolve: A solution exists.}

{dZphi0,dZmphiΔ  laξS(1)32π2}\left\{\text{dZphi}\to 0,\text{dZmphi}\to \frac{\Delta \;\text{la} \xi _{S(1)}}{32 \pi ^2}\right\}

Fermion-scalar vertex

amp3[1] = amp3[0] // ReplaceRepeated[#, {Zphi -> 1 + alpha dZphi, 
         Zx -> 1 + alpha dZx, Zg -> 1 + alpha dZg}] & // 
     Series[#, {alpha, 0, 1}] & // Normal // ReplaceAll[#, alpha -> 1] &

i(ig).(γ(k+l)+Mx).(ig).(γl+Mx).(ig)(l2Mx2).((k+l)2Mx2).((k+lp2)2Mphi2ξS(1))ig(dZg+dZphi2+dZx)-\frac{i (-i g).(\gamma \cdot (k+l)+\text{Mx}).(-i g).(\gamma \cdot l+\text{Mx}).(-i g)}{\left(l^2-\text{Mx}^2\right).\left((k+l)^2-\text{Mx}^2\right).\left((k+l-\text{p2})^2-\text{Mphi}^2 \xi _{S(1)}\right)}-i g \left(\text{dZg}+\frac{\text{dZphi}}{2}+\text{dZx}\right)

The result of the tensor reduction is quite large, since we keep the full gauge dependence and do not specify the kinematics

amp3[2] = TID[amp3[1], l, ToPaVe -> True, UsePaVeBasis -> True]

iπ2g3  B0(p22,Mx2,Mphi2ξS(1))+iπ2g3((γk).(γk)Mxγk+2  Mx2)  C0(k2,p22,k22(k  p2)+p22,Mx2,Mx2,Mphi2ξS(1))iπ2g3((γk).(γk)+2  Mxγk)  C1(k2,2(k  p2)+k2+p22,p22,Mx2,Mx2,Mphi2ξS(1))iπ2g3((γk).(γ  p2)+2  Mxγ  p2)  C1(p22,2(k  p2)+k2+p22,k2,Mx2,Mphi2ξS(1),Mx2)12ig(2  dZg+dZphi+2  dZx)i \pi ^2 g^3 \;\text{B}_0\left(\text{p2}^2,\text{Mx}^2,\text{Mphi}^2 \xi _{S(1)}\right)+i \pi ^2 g^3 \left(-(\gamma \cdot k).(\gamma \cdot k)-\text{Mx} \gamma \cdot k+2 \;\text{Mx}^2\right) \;\text{C}_0\left(k^2,\text{p2}^2,k^2-2 (k\cdot \;\text{p2})+\text{p2}^2,\text{Mx}^2,\text{Mx}^2,\text{Mphi}^2 \xi _{S(1)}\right)-i \pi ^2 g^3 ((\gamma \cdot k).(\gamma \cdot k)+2 \;\text{Mx} \gamma \cdot k) \;\text{C}_1\left(k^2,-2 (k\cdot \;\text{p2})+k^2+\text{p2}^2,\text{p2}^2,\text{Mx}^2,\text{Mx}^2,\text{Mphi}^2 \xi _{S(1)}\right)-i \pi ^2 g^3 ((\gamma \cdot k).(\gamma \cdot \;\text{p2})+2 \;\text{Mx} \gamma \cdot \;\text{p2}) \;\text{C}_1\left(\text{p2}^2,-2 (k\cdot \;\text{p2})+k^2+\text{p2}^2,k^2,\text{Mx}^2,\text{Mphi}^2 \xi _{S(1)},\text{Mx}^2\right)-\frac{1}{2} i g (2 \;\text{dZg}+\text{dZphi}+2 \;\text{dZx})

Discard all the finite pieces of the 1-loop amplitude

amp3Div[0] = PaVeUVPart[amp3[2], Prefactor -> 1/(2 Pi)^D] // DiracSimplify // 
          FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal // 
       FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], dZphi, 
         dZx, dZg}] & // ReplaceAll[#, Join[solMSbar1, solMSbar2]] & //Simplify // FCFactorOut[#, g] &

g(3iΔg232π2i  dZg)g \left(\frac{3 i \Delta g^2}{32 \pi ^2}-i \;\text{dZg}\right)

Equating this to zero and solving for dZg we obtain the renormalization constant in the minimal subtraction schemes.

solMSbar3 = FCMatchSolve[amp3Div[0], {g, SMP}]
solMS3 = solMSbar3 /. SMP["Delta"] -> 1/Epsilon;

FCMatchSolve: Solving for: {dZg}\text{FCMatchSolve: Solving for: }\{\text{dZg}\}

FCMatchSolve: A solution exists.\text{FCMatchSolve: A solution exists.}

{dZg3Δg232π2}\left\{\text{dZg}\to \frac{3 \Delta g^2}{32 \pi ^2}\right\}

Scalar self-interaction vertex

amp4[1] = amp4[0] // ReplaceRepeated[#, {Zphi -> 1 + alpha dZphi, 
         Zla -> 1 + alpha dZla}] & // 
     Series[#, {alpha, 0, 1}] & // Normal // ReplaceAll[#, alpha -> 1] &

2  tr((Mxγl).(ig).(γ(lp2)+Mx).(ig).(γ(lp2+p4)+Mx).(ig).(γ(lp2+p3+p4)+Mx).(ig))(l2Mx2).((l+p2)2Mx2).((l+p2p4)2Mx2).((l+p2p3p4)2Mx2)i  la(dZla+2  dZphi)-\frac{2 \;\text{tr}((\text{Mx}-\gamma \cdot l).(-i g).(\gamma \cdot (-l-\text{p2})+\text{Mx}).(-i g).(\gamma \cdot (-l-\text{p2}+\text{p4})+\text{Mx}).(-i g).(\gamma \cdot (-l-\text{p2}+\text{p3}+\text{p4})+\text{Mx}).(-i g))}{\left(l^2-\text{Mx}^2\right).\left((l+\text{p2})^2-\text{Mx}^2\right).\left((l+\text{p2}-\text{p4})^2-\text{Mx}^2\right).\left((l+\text{p2}-\text{p3}-\text{p4})^2-\text{Mx}^2\right)}-i \;\text{la} (\text{dZla}+2 \;\text{dZphi})

The result of the tensor reduction is quite large, since we keep the full gauge dependence and do not specify the kinematics

amp4[2] = TID[amp4[1], l, ToPaVe -> True, UsePaVeBasis -> True]

4iπ2  B0(p22,Mx2,Mx2)g44iπ2  B0(p222(p2  p4)+p42,Mx2,Mx2)g44iπ2  B0(p32+2(p3  p4)+p42,Mx2,Mx2)g4+4iπ2  B0(p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,Mx2,Mx2)g44iπ2  C0(p22,p42,p222(p2  p4)+p42,Mx2,Mx2,Mx2)(4  Mx2p2  p4)g44iπ2  C0(p32,p222(p2  p4)+p42,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)(4  Mx2+p2  p3p32p3  p4)g44iπ2  C0(p32,p42,p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)(4  Mx2+p3  p4)g44iπ2  C0(p22,p32+2(p3  p4)+p42,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)(2  Mx2p22+p2  p3+p2  p4+p32+2(p3  p4)+p42)g44iπ2  D0(p22,p42,p32,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p222(p2  p4)+p42,p32+2(p3  p4)+p42,Mx2,Mx2,Mx2,Mx2)(16  Mx44  p22  Mx2+4(p2  p3)  Mx2+4(p2  p4)  Mx24  p32  Mx24(p3  p4)  Mx24  p42  Mx2+(p2  p4)  p32p22(p3  p4)+2(p2  p4)(p3  p4)(p2  p3)  p42)g48iπ2(p2  p3+p2  p4)  C1(p22,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)g48iπ2(p32+2(p3  p4)+p42)  C1(p32+2(p3  p4)+p42,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p22,Mx2,Mx2,Mx2)g48iDπ2  C00(p22,p32+2(p3  p4)+p42,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)g48iπ2  p22  C11(p22,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)g48iπ2(p32+2(p3  p4)+p42)  C11(p32+2(p3  p4)+p42,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p22,Mx2,Mx2,Mx2)g416iπ2(p2  p3+p2  p4)  C12(p22,p222(p2  p3)2(p2  p4)+p32+2(p3  p4)+p42,p32+2(p3  p4)+p42,Mx2,Mx2,Mx2)g4i(dZla+2  dZphi)  la4 i \pi ^2 \;\text{B}_0\left(\text{p2}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-4 i \pi ^2 \;\text{B}_0\left(\text{p2}^2-2 (\text{p2}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-4 i \pi ^2 \;\text{B}_0\left(\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2\right) g^4+4 i \pi ^2 \;\text{B}_0\left(\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-4 i \pi ^2 \;\text{C}_0\left(\text{p2}^2,\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) \left(4 \;\text{Mx}^2-\text{p2}\cdot \;\text{p4}\right) g^4-4 i \pi ^2 \;\text{C}_0\left(\text{p3}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) \left(4 \;\text{Mx}^2+\text{p2}\cdot \;\text{p3}-\text{p3}^2-\text{p3}\cdot \;\text{p4}\right) g^4-4 i \pi ^2 \;\text{C}_0\left(\text{p3}^2,\text{p4}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) \left(4 \;\text{Mx}^2+\text{p3}\cdot \;\text{p4}\right) g^4-4 i \pi ^2 \;\text{C}_0\left(\text{p2}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) \left(2 \;\text{Mx}^2-\text{p2}^2+\text{p2}\cdot \;\text{p3}+\text{p2}\cdot \;\text{p4}+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2\right) g^4-4 i \pi ^2 \;\text{D}_0\left(\text{p2}^2,\text{p4}^2,\text{p3}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p4})+\text{p4}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) \left(16 \;\text{Mx}^4-4 \;\text{p2}^2 \;\text{Mx}^2+4 (\text{p2}\cdot \;\text{p3}) \;\text{Mx}^2+4 (\text{p2}\cdot \;\text{p4}) \;\text{Mx}^2-4 \;\text{p3}^2 \;\text{Mx}^2-4 (\text{p3}\cdot \;\text{p4}) \;\text{Mx}^2-4 \;\text{p4}^2 \;\text{Mx}^2+(\text{p2}\cdot \;\text{p4}) \;\text{p3}^2-\text{p2}^2 (\text{p3}\cdot \;\text{p4})+2 (\text{p2}\cdot \;\text{p4}) (\text{p3}\cdot \;\text{p4})-(\text{p2}\cdot \;\text{p3}) \;\text{p4}^2\right) g^4-8 i \pi ^2 (\text{p2}\cdot \;\text{p3}+\text{p2}\cdot \;\text{p4}) \;\text{C}_1\left(\text{p2}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-8 i \pi ^2 \left(\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2\right) \;\text{C}_1\left(\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-8 i D \pi ^2 \;\text{C}_{00}\left(\text{p2}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-8 i \pi ^2 \;\text{p2}^2 \;\text{C}_{11}\left(\text{p2}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-8 i \pi ^2 \left(\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2\right) \;\text{C}_{11}\left(\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p2}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-16 i \pi ^2 (\text{p2}\cdot \;\text{p3}+\text{p2}\cdot \;\text{p4}) \;\text{C}_{12}\left(\text{p2}^2,\text{p2}^2-2 (\text{p2}\cdot \;\text{p3})-2 (\text{p2}\cdot \;\text{p4})+\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{p3}^2+2 (\text{p3}\cdot \;\text{p4})+\text{p4}^2,\text{Mx}^2,\text{Mx}^2,\text{Mx}^2\right) g^4-i (\text{dZla}+2 \;\text{dZphi}) \;\text{la}

Discard all the finite pieces of the 1-loop amplitude

amp4Div[0] = PaVeUVPart[amp4[2], Prefactor -> 1/(2 Pi)^D] // DiracSimplify // 
         FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal // 
      FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], dZphi, 
        dZla}] & // ReplaceAll[#, Join[solMSbar1, solMSbar2]] & // Simplify

12i(2  dZla  la+Δg4π2)-\frac{1}{2} i \left(2 \;\text{dZla} \;\text{la}+\frac{\Delta g^4}{\pi ^2}\right)

Equating this to zero and solving for dZg we obtain the renormalization constant in the minimal subtraction schemes.

solMSbar4 = FCMatchSolve[amp4Div[0], {g, SMP, la}]
solMS4 = solMSbar4 /. SMP["Delta"] -> 1/Epsilon;

FCMatchSolve: Solving for: {dZla}\text{FCMatchSolve: Solving for: }\{\text{dZla}\}

FCMatchSolve: A solution exists.\text{FCMatchSolve: A solution exists.}

{dZlaΔg42π2  la}\left\{\text{dZla}\to -\frac{\Delta g^4}{2 \pi ^2 \;\text{la}}\right\}

Join[solMSbar1, solMSbar2, solMSbar3, solMSbar4] // TableForm

  dZmx3Δg232π2  dZxΔg232π2  dZphi0  dZmphiΔ  laξS(1)32π2  dZg3Δg232π2  dZlaΔg42π2  la\begin{array}{l} \;\text{dZmx}\to \frac{3 \Delta g^2}{32 \pi ^2} \\ \;\text{dZx}\to -\frac{\Delta g^2}{32 \pi ^2} \\ \;\text{dZphi}\to 0 \\ \;\text{dZmphi}\to \frac{\Delta \;\text{la} \xi _{S(1)}}{32 \pi ^2} \\ \;\text{dZg}\to \frac{3 \Delta g^2}{32 \pi ^2} \\ \;\text{dZla}\to -\frac{\Delta g^4}{2 \pi ^2 \;\text{la}} \\ \end{array}