Load
FeynCalc and the necessary add-ons or other packages
description = "Ga -> Ga, massless QED, 2-loops";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[10, 0, 0];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
diags = InsertFields[CreateTopologies[2, 1 -> 1, ExcludeTopologies -> {Tadpoles}], {V[1]} -> {V[1]},
InsertionLevel -> {Particles}, ExcludeParticles -> {V[2 | 3], S[_], U[_], F[1 | 3 | 4]}];
Paint[DiagramExtract[diags, {1, 4, 7}], ColumnsXRows -> {3, 1}, SheetHeader -> False,
Numbering -> None, ImageSize -> {768, 256}];

Obtain the amplitude
ampRaw = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {1, 4, 7}], Truncated -> True, GaugeRules -> {},
PreFactor -> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p},LoopMomenta -> {q1, q2},
UndoChiralSplittings -> True, ChangeDimension -> D, List -> True, SMP -> True,
DropSumOver -> True] // SMPToSymbol;
Fix the kinematics
FCClearScalarProducts[];
ScalarProduct[p, p] = pp;
Calculate the amplitude
AbsoluteTiming[ampSimp = DiracSimplify[ampRaw /. me -> 0];]
{0.571108,Null}
Identify and minimize the
topologies
{amp, topos} = FCLoopFindTopologies[ampSimp, {q1, q2}];
FCLoopFindTopologies: Number of the initial candidate topologies: 2
FCLoopFindTopologies: Number of the identified unique topologies: 2
FCLoopFindTopologies: Number of the preferred topologies among the unique topologies: 0
FCLoopFindTopologies: Number of the identified subtopologies: 0
subtopos = FCLoopFindSubtopologies[topos];
mappings = FCLoopFindTopologyMappings[topos, PreferredTopologies -> subtopos];
FCLoopFindTopologyMappings: Found 1 mapping relations
FCLoopFindTopologyMappings: Final number of independent topologies: 1
Rewrite the amplitude in
terms of GLIs
AbsoluteTiming[ampReduced = FCLoopTensorReduce[amp, topos];]
{0.430326,Null}
AbsoluteTiming[ampPreFinal = FCLoopApplyTopologyMappings[ampReduced, mappings];]
{0.344109,Null}
AbsoluteTiming[ampFinal = ampPreFinal // DiracSimplify;]
{0.007818,Null}
(*FCReloadAddOns[{"FeynHelpers"}];
FIREPrepareStartFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateStartFile[FCGetNotebookDirectory[],mappings[[2]]]
FIRECreateConfigFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateIntegralFile[Cases2[ampPreFinal,GLI],mappings[[2]],FCGetNotebookDirectory[]]
FIRERunReduction[FCGetNotebookDirectory[],mappings[[2]]]
tables=FIREImportResults[mappings[[2]],FCGetNotebookDirectory[]]//Flatten;
Put[tables,FileNameJoin[{FCGetNotebookDirectory[],"ReductionTable-Ga-Ga.m"}]];*)
reductionTable = Get[FileNameJoin[{FCGetNotebookDirectory[], "ReductionTable-Ga-Ga.m"}]];
resPreFinal = Collect2[Total[ampFinal /. reductionTable], GLI]
−3(D−4)2(D−1)pp12i(D−2)e4Gfctopology1(0,1,1,0,1)(3D3ppξAgLor1Lor2−4D3ξApLor1pLor2−23D2ppξAgLor1Lor2+32D2ξApLor1pLor2+52DppξAgLor1Lor2−76DξApLor1pLor2−32ppξAgLor1Lor2+48ξApLor1pLor2+6D3ppgLor1Lor2−6D3pLor1pLor2−42D2ppgLor1Lor2+42D2pLor1pLor2+120DppgLor1Lor2−120DpLor1pLor2−144ppgLor1Lor2+144pLor1pLor2)+3(D−4)2(D−1)pp12i(D−2)e4Gfctopology1(1,0,1,1,0)(3D3ppξAgLor1Lor2−4D3ξApLor1pLor2−23D2ppξAgLor1Lor2+32D2ξApLor1pLor2+52DppξAgLor1Lor2−76DξApLor1pLor2−32ppξAgLor1Lor2+48ξApLor1pLor2−6D3ppgLor1Lor2+6D3pLor1pLor2+42D2ppgLor1Lor2−42D2pLor1pLor2−120DppgLor1Lor2+120DpLor1pLor2+144ppgLor1Lor2−144pLor1pLor2)+(D−4)(D−1)2i(D−2)(D2−7D+16)e4Gfctopology1(1,1,0,1,1)(ppgLor1Lor2−pLor1pLor2)
integralMappings = FCLoopFindIntegralMappings[Cases2[resPreFinal, GLI], mappings[[2]]]
{{Gfctopology1(1,0,1,1,0)→Gfctopology1(0,1,1,0,1)},{Gfctopology1(0,1,1,0,1),Gfctopology1(1,1,0,1,1)}}
resFinal = Collect2[resPreFinal /. integralMappings[[1]], GLI]
(D−4)(D−1)2i(D−2)(D2−7D+16)e4Gfctopology1(1,1,0,1,1)(ppgLor1Lor2−pLor1pLor2)−(D−4)2(D−1)pp8i(D−3)(D−2)(D2−4D+8)e4Gfctopology1(0,1,1,0,1)(ppgLor1Lor2−pLor1pLor2)
Check the final results
resGrozinVacuumPol = -I FCI[e^4 2 (D - 2)/((D - 1) (D - 4)) (-(D^2 - 7 D + 16) GLI["fctopology1", {1, 1, 0, 1, 1}] +
4 (D - 3) (D^2 - 4 D + 8)/(D - 4) (1/SPD[p, p]) GLI["fctopology1", {0, 1, 1, 0, 1}]) (-(FVD[p, Lor1]*FVD[p, Lor2]) +
pp*MTD[Lor1, Lor2])];
FCCompareResults[resFinal, resGrozinVacuumPol,
Text -> {"\tCompare to Grozin's Lectures on QED and QCD, hep-ph/0508242, Eq. 5.18:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring -> Simplify];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Grozin’s Lectures on QED and QCD, hep-ph/0508242, Eq. 5.18:CORRECT.
\tCPU Time used: 29.186 s.