= "El Mu -> El Mu, QED, matrix element squared, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], F[2, {2}]} ->
diags {F[ 2, {1}], F[2, {2}]}, InsertionLevel -> {Classes},
-> QEDOnly];
Restrictions
[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {256, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
amp-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True]
-\frac{\text{e}^2 \left(\varphi (\overline{k_1},m_e)\right).\bar{\gamma }^{\text{Lor2}}.\left(\varphi (\overline{p_1},m_e)\right) \left(\varphi (\overline{k_2},m_{\mu })\right).\bar{\gamma }^{\text{Lor2}}.\left(\varphi (\overline{p_2},m_{\mu })\right)}{(\overline{k_2}-\overline{p_2}){}^2}
[];
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2,
SetMandelstam["m_e"], SMP["m_mu"], SMP["m_e"], SMP["m_mu"]]; SMP
[0] = (amp[0] (ComplexConjugate[amp[0]])) //
ampSquared// FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
FeynAmpDenominatorExplicit // Simplify DiracSimplify
\frac{2 \;\text{e}^4 \left(-2 m_e^2 \left(-2 m_{\mu }^2+s-t+u\right)+2 m_e^4+2 m_{\mu }^4-2 m_{\mu }^2 (s-t+u)+s^2+u^2\right)}{t^2}
[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_e"] -> 0}] & //
ampSquaredMassless1Simplify
\frac{2 \;\text{e}^4 \left(2 m_{\mu }^4-2 m_{\mu }^2 (s-t+u)+s^2+u^2\right)}{t^2}
[0] = ampSquared[0] // ReplaceAll[#, {
ampSquaredMassless2["m_e"] -> 0, SMP["m_mu"] -> 0}] & // Simplify SMP
\frac{2 \;\text{e}^4 \left(s^2+u^2\right)}{t^2}
= {
knownResults 8 SMP["e"]^4 (SP[p1, k2] SP[p2, k1] + SP[p1, p2] SP[k1, k2] -
(["m_mu"]^2 SP[p1, k1]))/(SP[k1 - p1])^2 // ExpandScalarProduct //
SMPReplaceAll[#, SMP["m_e"] -> 0] &,
8 SMP["e"]^4/t^2) ((s/2)^2 + (u/2)^2))
((};
[{ampSquaredMassless1[0], ampSquaredMassless2[0]}, knownResults,
FCCompareResultsText -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.61 and 5.71:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.61 and 5.71:} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }20.121\text{ s.}