Load
FeynCalc and the necessary add-ons or other packages
description = "El Mu -> El Mu, QED, matrix element squared, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], F[2, {2}]} ->
{F[ 2, {1}], F[2, {2}]}, InsertionLevel -> {Classes},
Restrictions -> QEDOnly];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
List -> False, SMP -> True, Contract -> True]
−(k2−p2)2e2(φ(k1,me)).γˉLor2.(φ(p1,me))(φ(k2,mμ)).γˉLor2.(φ(p2,mμ))
Fix the kinematics
FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2,
SMP["m_e"], SMP["m_mu"], SMP["m_e"], SMP["m_mu"]];
Square the amplitude
ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
DiracSimplify // Simplify
t22e4(−2me2(−2mμ2+s−t+u)+2me4+2mμ4−2mμ2(s−t+u)+s2+u2)
ampSquaredMassless1[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_e"] -> 0}] & //
Simplify
t22e4(2mμ4−2mμ2(s−t+u)+s2+u2)
ampSquaredMassless2[0] = ampSquared[0] // ReplaceAll[#, {
SMP["m_e"] -> 0, SMP["m_mu"] -> 0}] & // Simplify
t22e4(s2+u2)
Check the final results
knownResults = {
(8 SMP["e"]^4 (SP[p1, k2] SP[p2, k1] + SP[p1, p2] SP[k1, k2] -
SMP["m_mu"]^2 SP[p1, k1]))/(SP[k1 - p1])^2 // ExpandScalarProduct //
ReplaceAll[#, SMP["m_e"] -> 0] &,
((8 SMP["e"]^4/t^2) ((s/2)^2 + (u/2)^2))
};
FCCompareResults[{ampSquaredMassless1[0], ampSquaredMassless2[0]}, knownResults,
Text -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.61 and 5.71:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.61 and 5.71:CORRECT.
True
\tCPU Time used: 20.121 s.