Load
FeynCalc and the necessary add-ons or other packages
description = "El Ael -> Mu Amu, QED, total cross section, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], -F[2, {1}]} ->
{F[2, {2}], -F[2, {2}]}, InsertionLevel -> {Classes},
Restrictions -> QEDOnly];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
List -> False, SMP -> True, Contract -> True]
−(k1+k2)2e2(φ(−p2,me)).γˉLor1.(φ(p1,me))(φ(k1,mμ)).γˉLor1.(φ(−k2,mμ))
Polarized production: the particles are right-handed, while the
antiparticles are left-handed
ampPolarized[0] = amp[0] /. {
Spinor[-Momentum[k2], r__] :>
GA[6] . Spinor[-Momentum[k2], r],
Spinor[Momentum[k1], r__] :>
Spinor[Momentum[k1], r] . GA[7],
Spinor[Momentum[p1], r__] :>
GA[6] . Spinor[Momentum[p1], r],
Spinor[-Momentum[p2], r__] :>
Spinor[Momentum[p2], r] . GA[7]
}
−(k1+k2)2e2(φ(p2,me)).γˉ7.γˉLor1.γˉ6.(φ(p1,me))(φ(k1,mμ)).γˉ7.γˉLor1.γˉ6.(φ(−k2,mμ))
Fix the kinematics
FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2, SMP["m_e"], SMP["m_e"],
SMP["m_mu"], SMP["m_mu"]];
Square the amplitude
ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
DiracSimplify // Simplify
s22e4(2me2(2mμ2+s−t−u)+2me4+2mμ4+2mμ2(s−t−u)+t2+u2)
ampSquaredPolarized[0] =
(ampPolarized[0] (ComplexConjugate[ampPolarized[0]])) //
FeynAmpDenominatorExplicit // FermionSpinSum // DiracSimplify //Simplify
s24e4(me2+mμ2−u)2
ampSquaredMassless1[0] = ampSquared[0] // ReplaceAll[#, {
SMP["m_e"] -> 0}] &
s22e4(2mμ4+2mμ2(s−t−u)+t2+u2)
ampSquaredMassless2[0] = ampSquared[0] // ReplaceAll[#, {
SMP["m_e"] -> 0, SMP["m_mu"] -> 0}] & // Simplify
s22e4(t2+u2)
ampSquaredPolarizedMassless[0] = ampSquaredPolarized[0] // ReplaceAll[#, {
SMP["m_e"] -> 0, SMP["m_mu"] -> 0}] & // Simplify
s24e4u2
Total cross-section
The differential cross-section d sigma/ d Omega is given by
integral1 = (Factor[ampSquaredMassless2[0] /. {t -> -s/2 (1 - Cos[Th]), u -> -s/2 (1 + Cos[Th]),
SMP["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}])
16π2α2(cos2(Th)+1)
diffXSection1 = prefac1 integral1
4sα2(cos2(Th)+1)
The differential cross-section d sigma/ d t d phi is given by
128π2s1
integral2 = Simplify[ampSquaredMassless2[0]/(s/4) /.
{u -> -s - t, SMP["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}]
s3128π2α2(s2+2st+2t2)
diffXSection2 = prefac2 integral2
s4α2(s2+2st+2t2)
The total cross-section. We see that integrating both expressions
gives the same result
2 Pi Integrate[diffXSection1 Sin[Th], {Th, 0, Pi}]
3s4πα2
crossSectionTotal = 2 Pi Integrate[diffXSection2, {t, -s, 0}]
3s4πα2
Check the final results
knownResults = {
(8 SMP["e"]^4 (SP[p1, k1] SP[p2, k2] + SP[p1, k2] SP[p2, k1] +
SMP["m_mu"]^2 SP[p1, p2]))/(SP[p1 + p2])^2 // ExpandScalarProduct //
ReplaceAll[#, SMP["m_e"] -> 0] &,
(16 SMP["e"]^4 (SP[p1, k2] SP[p2, k1]))/(SP[p1 + p2])^2,
((8 SMP["e"]^4/s^2) ((t/2)^2 + (u/2)^2)), (4*Pi*SMP["alpha_fs"]^2)/(3*s)
};
FCCompareResults[{ampSquaredMassless1[0], ampSquaredPolarized[0],
ampSquaredMassless2[0], crossSectionTotal}, knownResults,
Text -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.10, 5.21, 5.70 and to Field, Applications of Perturbative QCD, Eq. 2.1.14",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Peskin and Schroeder, An Introduction to QFT, Eqs 5.10, 5.21, 5.70 and to Field, Applications of Perturbative QCD, Eq. 2.1.14CORRECT.
\tCPU Time used: 22.194 s.