Load
FeynCalc and the necessary add-ons or other packages
description = "Ga -> Ga Ga, QED, amplitude, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
MakeBoxes[rho, TraditionalForm] := "\[Rho]";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
MakeBoxes[k3, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(3\)]\)";
diags = InsertFields[CreateTopologies[1, 1 -> 2],
{V[1]} -> {V[1], V[1]}, InsertionLevel -> {Particles},
ExcludeParticles -> {S[_], V[_], U[_], F[3 | 4], F[2, {2 | 3}]}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, PreFactor -> 1,
Truncated -> True], IncomingMomenta -> {k1},
OutgoingMomenta -> {k2, k3}, LoopMomenta -> {q},
LorentzIndexNames -> {mu, nu, rho}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True]
(q2−me2).((q−k2)2−me2).((−k2−k3+q)2−me2)itr((me+γ⋅(q−k2−k3)).(−ieγρ).(me+γ⋅(q−k2)).(−ieγν).(me+γ⋅q).(−ieγμ))+(q2−me2).((q−k2)2−me2).((−k2−k3+q)2−me2)itr((me+γ⋅(q−k2−k3)).(ieγρ).(me+γ⋅(q−k2)).(ieγν).(me+γ⋅q).(ieγμ))
Calculate the amplitude
We obtain two triangle diagrams. The sum vanishes because the
contribution of the first diagram cancels the contribution of the second
diagram.
amp[1] = amp[0] // FCTraceFactor
0
Check the final results
FCCompareResults[amp[1], 0,
Text -> {"\tVerify Furry's theorem for 3-photons at 1-loop:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tVerify Furry’s theorem for 3-photons at 1-loop:CORRECT.
\tCPU Time used: 17.695 s.