Load
FeynCalc and the necessary add-ons or other packages
description = "Ga -> Ga, QED, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
We keep scaleless B0 functions, since otherwise the UV part would not
come out right.
$KeepLogDivergentScalelessIntegrals = True;
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
diags = InsertFields[CreateTopologies[1, 1 -> 1], {V[1]} ->
{V[1]}, InsertionLevel -> {Particles},
ExcludeParticles -> {S[_], V[2 | 3], (S | U)[_], F[3 | 4], F[2, {2 | 3}]}];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, PreFactor -> 1],
IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q},
LorentzIndexNames -> {mu, nu}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
Contract -> True]
```mathematica
$$\frac{\text{tr}\left(\left(m_e-\gamma \cdot q\right).\left(i \;\text{e} \gamma ^{\nu }\right).\left(m_e+\gamma \cdot (p-q)\right).\left(i \;\text{e} \gamma ^{\mu }\right)\right)}{\left(q^2-m_e^2\right).\left((q-p)^2-m_e^2\right)}$$
## Calculate the amplitude
```mathematica
amp[1] = TID[amp[0], q, ToPaVe -> True]
(1−D)p22iπ2e2B0(p2,me2,me2)(−((1−D)p4gμν)+2(1−D)p2pμpν+Dp2pμpν+4p2me2gμν−4me2pμpν−p4gμν)−(1−D)p24iπ2e2A0(me2)(−(1−D)p2gμν−Dpμpν−p2gμν+2pμpν)
Check the gauge invariance
tmp = Contract[FVD[p, mu] FVD[p, nu] amp[1]] // Factor
FCCompareResults[tmp, 0,
Text -> {"\tThe photon self-energy is gauge invariant:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
0
\tThe photon self-energy is gauge invariant:CORRECT.
The UV divergence of the amplitude can be obtained via PaVeUVPart.
Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint:
If you need the full result for the amplitude, use PaXEvaluate from
FeynHelpers.
ampDiv[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
SelectNotFree2[#, Epsilon] & // Simplify
12π2εie2(pμpν−p2gμν)
The self-energy amplitude is usually defined as (p^2 g^{mu nu} - p^mu
p^nu) i Pi(p^2)
pi[0] = FCI[ampDiv[0]/(I (SPD[p, p] MTD[mu, nu] - FVD[p, mu] FVD[p, nu]))] // Cancel
−12π2εe2
Check the final results
Keep in mind that Peskin and Schroeder use D = 4-Epsilon, while we
did the calculation with D = 4-2Epsilon.
knownResult = -SMP["e"]^2/(4 Pi)^(D/2) Gamma[2 - D/2]/
(SMP["m_e"]^2 - x (1 - x) SPD[p, p])^(2 - D/2)*(8 x (1 - x)) //
FCReplaceD[#, D -> 4 - Epsilon] & // Series[#, {Epsilon, 0, 0}] & //
Normal // SelectNotFree2[#, Epsilon] & // Integrate[#, {x, 0, 1}] & //
ReplaceAll[#, 1/Epsilon -> 1/(2 Epsilon)] &;
FCCompareResults[pi[0], knownResult,
Text -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Eq 10.44:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Peskin and Schroeder, An Introduction to QFT, Eq 10.44:CORRECT.
\tCPU Time used: 19.064 s.