= "Ga, QED, amplitude, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
= InsertFields[CreateTopologies[1, 1 -> 0],
diags {V[1]} -> {}, InsertionLevel -> {Particles},
-> {S[_], V[_], U[_], F[3 | 4], F[2, {2 | 3}]}];
ExcludeParticles
[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {256, 256}]; SheetHeader
The 1/(2Pi)^D prefactor is implicit.
[0] = FCFAConvert[CreateFeynAmp[diags, PreFactor -> 1,
amp-> True], IncomingMomenta -> {k},
Truncated -> {mu}, LoopMomenta -> {q},
LorentzIndexNames -> True, ChangeDimension -> D,
UndoChiralSplittings List -> False, SMP -> True]
-\frac{i \;\text{tr}\left(\left(m_e-\gamma \cdot q\right).\left(-i \;\text{e} \gamma ^{\mu }\right)\right)}{q^2-m_e^2}
Having performed the Dirac algebra we clearly see that this diagram must vanish because the loop integral is antisymmetric under q^mu -> - q^mu.
[1] = DiracSimplify[amp[0]] amp
\frac{4 \;\text{e} q^{\mu }}{q^2-m_e^2}
TID can recognize this and we obtain zero
[2] = TID[amp[1], q] amp
0
[amp[2], 0,
FCCompareResultsText -> {"\tVerify Furry's theorem for 1-photon at 1-loop:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tVerify Furry's theorem for 1-photon at 1-loop:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }19.702\text{ s.}