Load
FeynCalc and the necessary add-ons or other packages
description = "El -> Ga El, QED, F2(0) form factor, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
diags = InsertFields[CreateTopologies[1, 1 -> 2,
ExcludeTopologies -> {Tadpoles, WFCorrections}], {F[2, {1}]} ->
{V[1], F[2, {1}]}, InsertionLevel -> {Particles},
ExcludeParticles -> {S[_], V[2 | 3], (S | U)[_], F[3 | 4], F[2, {2 | 3}]}];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit. We need to replace e with -e to
be compatible with the convention D^mu = d^mu + ie A^mu
amp[0] = FCFAConvert[CreateFeynAmp[diags, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {k, p2},
LorentzIndexNames -> {mu},
LoopMomenta -> {q}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["e"] -> -SMP["e"]}] /.
k -> p1 - p2 /. q -> q + p1
((p1+q)2−me2).((p2+q)2−me2).q2igLor2Lor3ε∗μ(p1−p2)(φ(p2,me)).(−ieγLor3).(me+γ⋅(q+p2)).(−ieγμ).(me+γ⋅(q+p1)).(−ieγLor2).(φ(p1,me))
Fix the kinematics
FCClearScalarProducts[];
ME = SMP["m_e"];
ScalarProduct[p1, p1] = ME^2;
ScalarProduct[p2, p2] = ME^2;
ScalarProduct[k, k] = 0;
ScalarProduct[p1, p2] = ME^2;
Calculate the amplitude
Amputate the polarization vector.
amp[1] = amp[0] // ReplaceAll[#,
Pair[Momentum[Polarization[___], ___], ___] :> 1] & //
Contract // ReplaceAll[#, SMP["e"]^3 -> 4 Pi SMP["e"] SMP["alpha_fs"]] &
−((p1+q)2−me2).((p2+q)2−me2).q24παe(φ(p2,me)).γLor3.(me+γ⋅(q+p2)).γμ.(me+γ⋅(q+p1)).γLor3.(φ(p1,me))
amp[2] = TID[amp[1], q, ToPaVe -> True] // DiracSimplify //
Collect2[#, Spinor] &
8iπ3αeme(p1μ+p2μ)(2C1(0,me2,me2,me2,me2,0)+DC11(0,me2,me2,me2,me2,0)−2C11(0,me2,me2,me2,me2,0)+DC12(me2,0,me2,0,me2,me2)−2C12(me2,0,me2,0,me2,me2))(φ(p2,me)).(φ(p1,me))−4iπ3αe(DB0(0,me2,me2)−6B0(0,me2,me2)+4B0(me2,0,me2)+4me2C0(0,me2,me2,me2,me2,0)−2DC00(0,me2,me2,me2,me2,0)+4C00(0,me2,me2,me2,me2,0))(φ(p2,me)).γμ.(φ(p1,me))
To extract F2 (0) we need to look only at the piece proportional to
(p1+p2)^mu. Thus we can drop the g^mu -piece
amp[3] = amp[2] // ReplaceAll[#, FCI[GAD[mu]] :> 0] & // DotSimplify
8iπ3αeme(p1μ+p2μ)(2C1(0,me2,me2,me2,me2,0)+DC11(0,me2,me2,me2,me2,0)−2C11(0,me2,me2,me2,me2,0)+DC12(me2,0,me2,0,me2,me2)−2C12(me2,0,me2,0,me2,me2))(φ(p2,me)).(φ(p1,me))
The explicit values for the PaVe functions C1, C11 and C12 can be
obtained e.g. from H. Patel’s Package-X. Here we just insert the known
results.
amp[4] = amp[3] /. {
PaVe[1, {0, SMP["m_e"]^2, SMP["m_e"]^2}, {SMP["m_e"]^2, SMP["m_e"]^2, 0}, OptionsPattern[]] ->
1/(32 Pi^4 ME^2),
PaVe[1, 1, {0, SMP["m_e"]^2, SMP["m_e"]^2}, {SMP["m_e"]^2, SMP["m_e"]^2, 0}, OptionsPattern[]] ->
-(1/(96 Pi^4 ME^2)),
PaVe[1, 2, {SMP["m_e"]^2, 0, SMP["m_e"]^2}, {0, SMP["m_e"]^2, SMP["m_e"]^2}, OptionsPattern[]] ->
-(1/(192 Pi^4 ME^2))
}
8iπ3αeme(32π4me23−64π4me2D)(p1μ+p2μ)(φ(p2,me)).(φ(p1,me))
As expected, F2 (0) is free of any divergences. So we can safely do
the limit D ->4
amp[5] = amp[4] // ChangeDimension[#, 4] & // ReplaceAll[#, D -> 4] &
4πmeiαe(p1μ+p2μ)(φ(p2,me)).(φ(p1,me))
We obtained 2meie(p1+p2)μF2(0)uˉ(p2)u(p1). Dividing by the numerical prefactor
and substituting e2=4π2α
yields F2(0)
f2[0] = (amp[5]/((I SMP["e"])/(2 ME))) //
ReplaceAll [#, {Spinor[__] . Spinor[__] :> 1,
FCI[FV[p1, _] + FV[p2, _]] :> 1}] &
2πα
Check the final results
```mathematica knownResult = AlphaFS/(2 Pi); FCCompareResults[f2[0],
knownResult, Text -> {“to J. Schwinger, Phys. Rev. 73, 416-417,
1948:”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]],
Automatic}]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ”
s.”];
```mathematica
\tCompare to J. Schwinger, Phys. Rev. 73, 416-417, 1948:CORRECT.
\tCPU Time used: 25.367 s.