= "El -> El, QED, only UV divergences, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
= True; $KeepLogDivergentScalelessIntegrals
= InsertFields[CreateTopologies[1, 1 -> 1,
diags -> Tadpoles], {F[2, {1}]} ->
ExcludeTopologies {F[2, {1}]}, InsertionLevel -> {Particles},
-> {S[_], V[2 | 3], (S | U)[_], F[3 | 4], F[2, {2 | 3}]}];
ExcludeParticles
[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {256, 256}]; SheetHeader
The 1/(2Pi)^D prefactor is implicit. We keep the full gauge dependence.
[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True,
amp-> 1, GaugeRules -> {}], IncomingMomenta -> {p},
PreFactor -> {p}, LoopMomenta -> {q}, UndoChiralSplittings -> True,
OutgoingMomenta -> D, List -> False, SMP -> True, Contract -> True] ChangeDimension
-\frac{\text{e}^2 \gamma ^{\text{Lor2}}.\left(m_e+\gamma \cdot q\right).\gamma ^{\text{Lor2}}}{\left(q^2-m_e^2\right).(q-p)^2}-\frac{\text{e}^2 \left(1-\xi _A\right) (\gamma \cdot (p-q)).\left(m_e+\gamma \cdot q\right).(\gamma \cdot (q-p))}{\left(q^2-m_e^2\right).(q-p)^4}
[1] = TID[amp[0], q, ToPaVe -> True] amp
\frac{1}{2 p^2}i \pi ^2 \;\text{e}^2 \;\text{B}_0\left(p^2,0,m_e^2\right) \left(\xi _A m_e^2 \gamma \cdot p-2 \xi _A m_e (\gamma \cdot p).(\gamma \cdot p)+p^2 \xi _A \gamma \cdot p-D \left(p^2-m_e^2\right) \gamma \cdot p-2 D p^2 m_e+2 D p^2 \gamma \cdot p+m_e^2 (-(\gamma \cdot p))+2 m_e (\gamma \cdot p).(\gamma \cdot p)+2 \left(p^2-m_e^2\right) \gamma \cdot p-5 p^2 \gamma \cdot p\right)-\frac{i \pi ^2 \;\text{e}^2 \left(1-\xi _A\right) \;\text{B}_0(0,0,0) \left(m_e^2 (-(\gamma \cdot p))+2 m_e (\gamma \cdot p).(\gamma \cdot p)-2 p^2 m_e+p^2 \gamma \cdot p\right)}{2 p^2}+\frac{i \pi ^2 \;\text{e}^2 \left(1-\xi _A\right) \left(-m_e^2 \left(p^2-m_e^2\right) \gamma \cdot p-4 p^2 m_e (\gamma \cdot p).(\gamma \cdot p)+2 m_e \left(p^2-m_e^2\right) (\gamma \cdot p).(\gamma \cdot p)+p^2 \left(p^2-m_e^2\right) \gamma \cdot p+2 p^2 m_e^3+2 p^4 m_e\right) \;\text{C}_0\left(0,p^2,p^2,0,0,m_e^2\right)}{2 p^2}+\frac{i \pi ^2 (2-D) \;\text{e}^2 \gamma \cdot p \;\text{A}_0\left(m_e^2\right)}{2 p^2}
The UV divergence of the amplitude can be obtained via PaVeUVPart. Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint: If you need the full result for the amplitude, use PaXEvaluate from FeynHelpers.
[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
ampDiv[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCReplaceD[#, Epsilon] & // Simplify SelectNotFree2
\frac{i \;\text{e}^2 \left(\xi _A \gamma \cdot p-\left(\xi _A+3\right) m_e\right)}{16 \pi ^2 \varepsilon }
The self-energy amplitude is usually defined as -i Sigma(p^2)
[0] = I ampDiv[0] sigma
-\frac{\text{e}^2 \left(\xi _A \gamma \cdot p-\left(\xi _A+3\right) m_e\right)}{16 \pi ^2 \varepsilon }
[0] = sigma[0] /. GaugeXi[A] -> 1 sigmaFeynmanGauge
-\frac{\text{e}^2 \left(\gamma \cdot p-4 m_e\right)}{16 \pi ^2 \varepsilon }
Keep in mind that Peskin and Schroeder use D = 4-Epsilon, while we did the calculation with D = 4-2Epsilon.
= SMP["e"]^2/(4 Pi)^(D/2) Gamma[2 - D/2]/
knownResult 1 - x) SMP["m_e"]^2 + x ScaleMu^2 - x (1 - x) SPD[p, p])^(2 - D/2)*
((4 - Epsilon) SMP["m_e"] - (2 - Epsilon) x GSD[p]) //
(([#, D -> 4 - Epsilon] & // Series[#, {Epsilon, 0, 0}] & //
FCReplaceDNormal // SelectNotFree2[#, Epsilon] & // Integrate[#, {x, 0, 1}] & //
ReplaceAll[#, 1/Epsilon -> 1/(2 Epsilon)] &;
[sigmaFeynmanGauge[0], knownResult,
FCCompareResultsText -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Eq 10.41:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tCompare to Peskin and Schroeder, An Introduction to QFT, Eq 10.41:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }15.789\text{ s.}