Load
FeynCalc and the necessary add-ons or other packages
description = "Gh -> Gh, massless QCD, 2-loops";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[10, 0, 0];
FeynCalc 10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the onlinedocumentation, visit the forum and have a look at the supplied examples. The PDF-version of the manual can be downloaded here.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
diags = InsertFields[CreateTopologies[2, 1 -> 1, ExcludeTopologies -> {Tadpoles}], {U[5]} -> {U[5]},
InsertionLevel -> {Classes}, ExcludeParticles -> {V[1 | 2 | 3], S[_]}, Model -> SMQCD];
Paint[diags, ColumnsXRows -> {4, 1}, SheetHeader -> False,
Numbering -> True, ImageSize -> {1024, 256}];



Obtain the amplitude
ampRaw = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {2, 3, 4, 6, 7, 8, 9}], Truncated -> True,
PreFactor -> 1, GaugeRules -> {}], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q1, q2},
UndoChiralSplittings -> True, ChangeDimension -> D, List -> True, SMP -> True,
DropSumOver -> True, FinalSubstitutions -> {MQU[Index[Generation, 3]] -> 0, GaugeXi[_] -> 1 - GaugeXi}] // SMPToSymbol;
Fix the kinematics
FCClearScalarProducts[];
ScalarProduct[p, p] = pp;
Calculate the amplitude
AbsoluteTiming[ampSimp = (ampRaw) // Contract // DiracSimplify // SUNSimplify;]
{2.51085,Null}
Identify and minimize the
topologies
{amp, topos} = FCLoopFindTopologies[ampSimp, {q1, q2}];
FCLoopFindTopologies: Number of the initial candidate topologies: 3
FCLoopFindTopologies: Number of the identified unique topologies: 3
FCLoopFindTopologies: Number of the preferred topologies among the unique topologies: 0
FCLoopFindTopologies: Number of the identified subtopologies: 0
subtopos = FCLoopFindSubtopologies[topos];
mappings = FCLoopFindTopologyMappings[topos, PreferredTopologies -> subtopos];
FCLoopFindTopologyMappings: Found 2 mapping relations
FCLoopFindTopologyMappings: Final number of independent topologies: 1
Rewrite the amplitude in
terms of GLIs
AbsoluteTiming[ampReduced = FCLoopTensorReduce[amp, topos];]
{1.10573,Null}
AbsoluteTiming[ampPreFinal = FCLoopApplyTopologyMappings[ampReduced, mappings];]
{0.38536,Null}
AbsoluteTiming[ampFinal = ampPreFinal // DiracSimplify // SUNSimplify;]
{1.55753,Null}
(*FCReloadAddOns[{"FeynHelpers"}];
FIREPrepareStartFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateLiteRedFiles[FCGetNotebookDirectory[],mappings[[2]]]
FIRECreateStartFile[FCGetNotebookDirectory[],mappings[[2]]]
FIRECreateConfigFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateIntegralFile[Cases2[ampPreFinal,GLI],mappings[[2]],FCGetNotebookDirectory[]]
FIRERunReduction[FCGetNotebookDirectory[],mappings[[2]]]
tables=FIREImportResults[mappings[[2]],FCGetNotebookDirectory[]]//Flatten;
Put[tables,FileNameJoin[{FCGetNotebookDirectory[],"ReductionTable-Gh-Gh.m"}]];*)
reductionTable = Get[FileNameJoin[{FCGetNotebookDirectory[], "ReductionTable-Gh-Gh.m"}]];
resPreFinal = Collect2[Total[ampFinal /. reductionTable] // FeynAmpDenominatorExplicit, GLI]
16(D−6)(D−4)21igs4CAGfctopology1(0,1,1,0,1)δGlu1Glu2(6D5ξ2CA−115D4ξ2CA+2D4ξCA+867D3ξ2CA−130D3ξCA−16D3CA−3216D2ξ2CA+1188D2ξCA+24D2CA+5884Dξ2CA−3840DξCA+432DCA−4256ξ2CA+4160ξCA−1024CA+16D3−128D2+320D−256)−32(D−4)igs4ppCA2(2D2ξ2−8D2ξ−15Dξ2+58Dξ−16D+26ξ2−104ξ+56)Gfctopology1(1,1,0,1,1)δGlu1Glu2
integralMappings = FCLoopFindIntegralMappings[Cases2[resPreFinal, GLI], mappings[[2]]]
{{},{Gfctopology1(0,1,1,0,1),Gfctopology1(1,1,0,1,1)}}
resFinal = Collect2[resPreFinal /. integralMappings[[1]], GLI]
16(D−6)(D−4)21igs4CAGfctopology1(0,1,1,0,1)δGlu1Glu2(6D5ξ2CA−115D4ξ2CA+2D4ξCA+867D3ξ2CA−130D3ξCA−16D3CA−3216D2ξ2CA+1188D2ξCA+24D2CA+5884Dξ2CA−3840DξCA+432DCA−4256ξ2CA+4160ξCA−1024CA+16D3−128D2+320D−256)−32(D−4)igs4ppCA2(2D2ξ2−8D2ξ−15Dξ2+58Dξ−16D+26ξ2−104ξ+56)Gfctopology1(1,1,0,1,1)δGlu1Glu2
ruleMasters = {
GLI["fctopology1", {0, 1, 1, 0, 1}] -> (-pp)^(1 - 2*ep)*(13/8 + 1/(4*ep) + (115*ep)/16 + (49*ep^2)/2 - (ep*Zeta2)/4 - (13*ep^2*Zeta2)/8 + (9*ep^2*(9/4 - 2*Zeta[3]))/8 - (5*ep^2*Zeta[3])/12),
GLI["fctopology1", {1, 1, 0, 1, 1}] -> (2 + ep^(-1) + 4*ep + (16*ep^2)/3 - (ep*Zeta2)/2 - ep^2*Zeta2 + (4*ep^2*(2 - 2*Zeta[3]))/3 + (ep^2*Zeta[3])/3)^2/(-pp)^(2*ep)
}
{Gfctopology1(0,1,1,0,1)→(−pp)1−2ep(−813ep2ζ(2)−125ep2ζ(3)+89ep2(49−2ζ(3))+249ep2−41epζ(2)+16115ep+4ep1+813),Gfctopology1(1,1,0,1,1)→(−pp)−2ep(ep2(−ζ(2))+3ep2ζ(3)+34ep2(2−2ζ(3))+316ep2−21epζ(2)+4ep+ep1+2)2}
resEpPre = FCReplaceD[resFinal /. ruleMasters, D -> 4 - 2 ep]
64(−2ep−2)ep21igs4CA(−pp)1−2ep(−813ep2ζ(2)−125ep2ζ(3)+89ep2(49−2ζ(3))+249ep2−41epζ(2)+16115ep+4ep1+813)δGlu1Glu2(6(4−2ep)5ξ2CA−115(4−2ep)4ξ2CA+2(4−2ep)4ξCA+867(4−2ep)3ξ2CA−130(4−2ep)3ξCA−3216(4−2ep)2ξ2CA+1188(4−2ep)2ξCA+5884(4−2ep)ξ2CA−3840(4−2ep)ξCA−16(4−2ep)3CA+24(4−2ep)2CA+432(4−2ep)CA−4256ξ2CA+4160ξCA−1024CA+16(4−2ep)3−128(4−2ep)2+320(4−2ep)−256)+64ep1igs4ppCA2(2(4−2ep)2ξ2−8(4−2ep)2ξ−15(4−2ep)ξ2+58(4−2ep)ξ−16(4−2ep)+26ξ2−104ξ+56)(−pp)−2ep(ep2(−ζ(2))+3ep2ζ(3)+34ep2(2−2ζ(3))+316ep2−21epζ(2)+4ep+ep1+2)2δGlu1Glu2
To bring our result into the suitable form comparable with the
literature, we must divide it (1- Zeta2/2 ep2)2 and again
expand it in ep. This yields a prefactor called eta^2. We also factor
out the prefactor (-pp)^(-2ep)
resEp = Collect2[Series[eta^2/(1 - Zeta2/2 ep^2)^2 FCReplaceD[Cancel[resEpPre/(-pp)^(-2 ep)], D -> 4 - 2 ep], {ep, 0, 0}] // Normal // SUNSimplify, ep, CA, ep]
−32ep2ieta2gs4(ξ2−14ξ−40)ppCA2δGlu1Glu2−4ep2ieta2gs4ppCAδGlu1Glu2+32epieta2gs4(7ξ+166)ppCA2δGlu1Glu2−8ep7ieta2gs4ppCAδGlu1Glu2−1653ieta2gs4ppCAδGlu1Glu2−641ieta2gs4ppCA2(−24ξ2+9ξ+12ξ2ζ(3)+48ζ(3)−1198)δGlu1Glu2
Check the final results
G2xPaper = (((CA^2*eta^2*gs^4)/(-pp)^(2*ep)) * ((83/16 + 7/32*GaugeXi)/ep + (5/4 + 7/16*GaugeXi - 1/32 GaugeXi^2)/ep^2 +
599/32 - 3/4 Zeta[3] - 9/64 GaugeXi + 3/8 GaugeXi^2 - 3/16 GaugeXi^2 Zeta[3] )/(4*Pi)^D);
G2qPaper = (((CA*eta^2*gs^4*Tf)/(-pp)^(2*ep))*(-53/8 - 1/(2*ep^2) - 7/(4*ep))/(4*Pi)^D);
G2xPaperFinal = pp FCI@SUNDelta[Glu1, Glu2] Collect2[Series[FCReplaceD[I (4 Pi)^D Cancel[(G2xPaper)/(-pp)^(-2 ep)], {D -> 4 - 2 ep}], {ep, 0, 0}] // Normal // PowerExpand, ep]
G2qPaperFinal = pp FCI@SUNDelta[Glu1, Glu2] Collect2[Series[FCReplaceD[I (4 Pi)^D Cancel[(G2qPaper)/(-pp)^(-2 ep)], {D -> 4 - 2 ep}], {ep, 0, 0}] // Normal // PowerExpand, ep] /. Tf -> 1/2
ppδGlu1Glu2(−32ep2ieta2gs4(ξ2−14ξ−40)CA2+32epieta2gs4(7ξ+166)CA2−641ieta2gs4CA2(−24ξ2+9ξ+12ξ2ζ(3)+48ζ(3)−1198))
ppδGlu1Glu2(−4ep2ieta2gs4CA−8ep7ieta2gs4CA−1653ieta2gs4CA)
resLit = G2xPaperFinal + G2qPaperFinal
ppδGlu1Glu2(−4ep2ieta2gs4CA−8ep7ieta2gs4CA−1653ieta2gs4CA)+ppδGlu1Glu2(−32ep2ieta2gs4(ξ2−14ξ−40)CA2+32epieta2gs4(7ξ+166)CA2−641ieta2gs4CA2(−24ξ2+9ξ+12ξ2ζ(3)+48ζ(3)−1198))
```mathematica FCCompareResults[resLit, resEp, Text -> {“to
Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.14-6.15:”,
“CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic},
Factoring -> Simplify]; Print[“Time used:”, Round[N[TimeUsed[], 4],
0.001], ” s.”];
```mathematica
\tCompare to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.14-6.15:CORRECT.
\tCPU Time used: 21.73 s.