= "Gh -> Gh, massless QCD, 2-loops";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[10, 0, 0]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the }\underline{\text{online} \;\text{documentation},}\;\text{ visit the }\underline{\text{forum}}\;\text{ and have a look at the supplied }\underline{\text{examples}.}\;\text{ The PDF-version of the manual can be downloaded }\underline{\text{here}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
= InsertFields[CreateTopologies[2, 1 -> 1, ExcludeTopologies -> {Tadpoles}], {U[5]} -> {U[5]},
diags -> {Classes}, ExcludeParticles -> {V[1 | 2 | 3], S[_]}, Model -> SMQCD]; InsertionLevel
[diags, ColumnsXRows -> {4, 1}, SheetHeader -> False,
Paint-> True, ImageSize -> {1024, 256}]; Numbering
= FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {2, 3, 4, 6, 7, 8, 9}], Truncated -> True,
ampRaw -> 1, GaugeRules -> {}], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q1, q2},
PreFactor -> True, ChangeDimension -> D, List -> True, SMP -> True,
UndoChiralSplittings -> True, FinalSubstitutions -> {MQU[Index[Generation, 3]] -> 0, GaugeXi[_] -> 1 - GaugeXi}] // SMPToSymbol; DropSumOver
[];
FCClearScalarProducts[p, p] = pp; ScalarProduct
AbsoluteTiming[ampSimp = (ampRaw) // Contract // DiracSimplify // SUNSimplify;]
\{2.51085,\text{Null}\}
{amp, topos} = FCLoopFindTopologies[ampSimp, {q1, q2}];
\text{FCLoopFindTopologies: Number of the initial candidate topologies: }3
\text{FCLoopFindTopologies: Number of the identified unique topologies: }3
\text{FCLoopFindTopologies: Number of the preferred topologies among the unique topologies: }0
\text{FCLoopFindTopologies: Number of the identified subtopologies: }0
= FCLoopFindSubtopologies[topos]; subtopos
= FCLoopFindTopologyMappings[topos, PreferredTopologies -> subtopos]; mappings
\text{FCLoopFindTopologyMappings: }\;\text{Found }2\text{ mapping relations }
\text{FCLoopFindTopologyMappings: }\;\text{Final number of independent topologies: }1
AbsoluteTiming[ampReduced = FCLoopTensorReduce[amp, topos];]
\{1.10573,\text{Null}\}
AbsoluteTiming[ampPreFinal = FCLoopApplyTopologyMappings[ampReduced, mappings];]
\{0.38536,\text{Null}\}
AbsoluteTiming[ampFinal = ampPreFinal // DiracSimplify // SUNSimplify;]
\{1.55753,\text{Null}\}
(*FCReloadAddOns[{"FeynHelpers"}];
FIREPrepareStartFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateLiteRedFiles[FCGetNotebookDirectory[],mappings[[2]]]
FIRECreateStartFile[FCGetNotebookDirectory[],mappings[[2]]]
FIRECreateConfigFile[mappings[[2]],FCGetNotebookDirectory[]]
FIRECreateIntegralFile[Cases2[ampPreFinal,GLI],mappings[[2]],FCGetNotebookDirectory[]]
FIRERunReduction[FCGetNotebookDirectory[],mappings[[2]]]
tables=FIREImportResults[mappings[[2]],FCGetNotebookDirectory[]]//Flatten;
Put[tables,FileNameJoin[{FCGetNotebookDirectory[],"ReductionTable-Gh-Gh.m"}]];*)
= Get[FileNameJoin[{FCGetNotebookDirectory[], "ReductionTable-Gh-Gh.m"}]]; reductionTable
= Collect2[Total[ampFinal /. reductionTable] // FeynAmpDenominatorExplicit, GLI] resPreFinal
\frac{1}{16 (D-6) (D-4)^2}i \;\text{gs}^4 C_A G^{\text{fctopology1}}(0,1,1,0,1) \delta ^{\text{Glu1}\;\text{Glu2}} \left(6 D^5 \xi ^2 C_A-115 D^4 \xi ^2 C_A+2 D^4 \xi C_A+867 D^3 \xi ^2 C_A-130 D^3 \xi C_A-16 D^3 C_A-3216 D^2 \xi ^2 C_A+1188 D^2 \xi C_A+24 D^2 C_A+5884 D \xi ^2 C_A-3840 D \xi C_A+432 D C_A-4256 \xi ^2 C_A+4160 \xi C_A-1024 C_A+16 D^3-128 D^2+320 D-256\right)-\frac{i \;\text{gs}^4 \;\text{pp} C_A^2 \left(2 D^2 \xi ^2-8 D^2 \xi -15 D \xi ^2+58 D \xi -16 D+26 \xi ^2-104 \xi +56\right) G^{\text{fctopology1}}(1,1,0,1,1) \delta ^{\text{Glu1}\;\text{Glu2}}}{32 (D-4)}
= FCLoopFindIntegralMappings[Cases2[resPreFinal, GLI], mappings[[2]]] integralMappings
\left\{\{\},\left\{G^{\text{fctopology1}}(0,1,1,0,1),G^{\text{fctopology1}}(1,1,0,1,1)\right\}\right\}
= Collect2[resPreFinal /. integralMappings[[1]], GLI] resFinal
\frac{1}{16 (D-6) (D-4)^2}i \;\text{gs}^4 C_A G^{\text{fctopology1}}(0,1,1,0,1) \delta ^{\text{Glu1}\;\text{Glu2}} \left(6 D^5 \xi ^2 C_A-115 D^4 \xi ^2 C_A+2 D^4 \xi C_A+867 D^3 \xi ^2 C_A-130 D^3 \xi C_A-16 D^3 C_A-3216 D^2 \xi ^2 C_A+1188 D^2 \xi C_A+24 D^2 C_A+5884 D \xi ^2 C_A-3840 D \xi C_A+432 D C_A-4256 \xi ^2 C_A+4160 \xi C_A-1024 C_A+16 D^3-128 D^2+320 D-256\right)-\frac{i \;\text{gs}^4 \;\text{pp} C_A^2 \left(2 D^2 \xi ^2-8 D^2 \xi -15 D \xi ^2+58 D \xi -16 D+26 \xi ^2-104 \xi +56\right) G^{\text{fctopology1}}(1,1,0,1,1) \delta ^{\text{Glu1}\;\text{Glu2}}}{32 (D-4)}
= {
ruleMasters ["fctopology1", {0, 1, 1, 0, 1}] -> (-pp)^(1 - 2*ep)*(13/8 + 1/(4*ep) + (115*ep)/16 + (49*ep^2)/2 - (ep*Zeta2)/4 - (13*ep^2*Zeta2)/8 + (9*ep^2*(9/4 - 2*Zeta[3]))/8 - (5*ep^2*Zeta[3])/12),
GLI["fctopology1", {1, 1, 0, 1, 1}] -> (2 + ep^(-1) + 4*ep + (16*ep^2)/3 - (ep*Zeta2)/2 - ep^2*Zeta2 + (4*ep^2*(2 - 2*Zeta[3]))/3 + (ep^2*Zeta[3])/3)^2/(-pp)^(2*ep)
GLI}
\left\{G^{\text{fctopology1}}(0,1,1,0,1)\to (-\text{pp})^{1-2 \;\text{ep}} \left(-\frac{13}{8} \;\text{ep}^2 \zeta (2)-\frac{5 \;\text{ep}^2 \zeta (3)}{12}+\frac{9}{8} \;\text{ep}^2 \left(\frac{9}{4}-2 \zeta (3)\right)+\frac{49 \;\text{ep}^2}{2}-\frac{1}{4} \;\text{ep} \zeta (2)+\frac{115 \;\text{ep}}{16}+\frac{1}{4 \;\text{ep}}+\frac{13}{8}\right),G^{\text{fctopology1}}(1,1,0,1,1)\to (-\text{pp})^{-2 \;\text{ep}} \left(\text{ep}^2 (-\zeta (2))+\frac{\text{ep}^2 \zeta (3)}{3}+\frac{4}{3} \;\text{ep}^2 (2-2 \zeta (3))+\frac{16 \;\text{ep}^2}{3}-\frac{1}{2} \;\text{ep} \zeta (2)+4 \;\text{ep}+\frac{1}{\text{ep}}+2\right)^2\right\}
= FCReplaceD[resFinal /. ruleMasters, D -> 4 - 2 ep] resEpPre
\frac{1}{64 (-2 \;\text{ep}-2) \;\text{ep}^2}i \;\text{gs}^4 C_A (-\text{pp})^{1-2 \;\text{ep}} \left(-\frac{13}{8} \;\text{ep}^2 \zeta (2)-\frac{5 \;\text{ep}^2 \zeta (3)}{12}+\frac{9}{8} \;\text{ep}^2 \left(\frac{9}{4}-2 \zeta (3)\right)+\frac{49 \;\text{ep}^2}{2}-\frac{1}{4} \;\text{ep} \zeta (2)+\frac{115 \;\text{ep}}{16}+\frac{1}{4 \;\text{ep}}+\frac{13}{8}\right) \delta ^{\text{Glu1}\;\text{Glu2}} \left(6 (4-2 \;\text{ep})^5 \xi ^2 C_A-115 (4-2 \;\text{ep})^4 \xi ^2 C_A+2 (4-2 \;\text{ep})^4 \xi C_A+867 (4-2 \;\text{ep})^3 \xi ^2 C_A-130 (4-2 \;\text{ep})^3 \xi C_A-3216 (4-2 \;\text{ep})^2 \xi ^2 C_A+1188 (4-2 \;\text{ep})^2 \xi C_A+5884 (4-2 \;\text{ep}) \xi ^2 C_A-3840 (4-2 \;\text{ep}) \xi C_A-16 (4-2 \;\text{ep})^3 C_A+24 (4-2 \;\text{ep})^2 C_A+432 (4-2 \;\text{ep}) C_A-4256 \xi ^2 C_A+4160 \xi C_A-1024 C_A+16 (4-2 \;\text{ep})^3-128 (4-2 \;\text{ep})^2+320 (4-2 \;\text{ep})-256\right)+\frac{1}{64 \;\text{ep}}i \;\text{gs}^4 \;\text{pp} C_A^2 \left(2 (4-2 \;\text{ep})^2 \xi ^2-8 (4-2 \;\text{ep})^2 \xi -15 (4-2 \;\text{ep}) \xi ^2+58 (4-2 \;\text{ep}) \xi -16 (4-2 \;\text{ep})+26 \xi ^2-104 \xi +56\right) (-\text{pp})^{-2 \;\text{ep}} \left(\text{ep}^2 (-\zeta (2))+\frac{\text{ep}^2 \zeta (3)}{3}+\frac{4}{3} \;\text{ep}^2 (2-2 \zeta (3))+\frac{16 \;\text{ep}^2}{3}-\frac{1}{2} \;\text{ep} \zeta (2)+4 \;\text{ep}+\frac{1}{\text{ep}}+2\right)^2 \delta ^{\text{Glu1}\;\text{Glu2}}
To bring our result into the suitable form comparable with the literature, we must divide it (1- Zeta2/2 ep2)2 and again expand it in ep. This yields a prefactor called eta^2. We also factor out the prefactor (-pp)^(-2ep)
= Collect2[Series[eta^2/(1 - Zeta2/2 ep^2)^2 FCReplaceD[Cancel[resEpPre/(-pp)^(-2 ep)], D -> 4 - 2 ep], {ep, 0, 0}] // Normal // SUNSimplify, ep, CA, ep] resEp
-\frac{i \;\text{eta}^2 \;\text{gs}^4 \left(\xi ^2-14 \xi -40\right) \;\text{pp} C_A^2 \delta ^{\text{Glu1}\;\text{Glu2}}}{32 \;\text{ep}^2}-\frac{i \;\text{eta}^2 \;\text{gs}^4 \;\text{pp} C_A \delta ^{\text{Glu1}\;\text{Glu2}}}{4 \;\text{ep}^2}+\frac{i \;\text{eta}^2 \;\text{gs}^4 (7 \xi +166) \;\text{pp} C_A^2 \delta ^{\text{Glu1}\;\text{Glu2}}}{32 \;\text{ep}}-\frac{7 i \;\text{eta}^2 \;\text{gs}^4 \;\text{pp} C_A \delta ^{\text{Glu1}\;\text{Glu2}}}{8 \;\text{ep}}-\frac{53}{16} i \;\text{eta}^2 \;\text{gs}^4 \;\text{pp} C_A \delta ^{\text{Glu1}\;\text{Glu2}}-\frac{1}{64} i \;\text{eta}^2 \;\text{gs}^4 \;\text{pp} C_A^2 \left(-24 \xi ^2+9 \xi +12 \xi ^2 \zeta (3)+48 \zeta (3)-1198\right) \delta ^{\text{Glu1}\;\text{Glu2}}
= (((CA^2*eta^2*gs^4)/(-pp)^(2*ep)) * ((83/16 + 7/32*GaugeXi)/ep + (5/4 + 7/16*GaugeXi - 1/32 GaugeXi^2)/ep^2 +
G2xPaper 599/32 - 3/4 Zeta[3] - 9/64 GaugeXi + 3/8 GaugeXi^2 - 3/16 GaugeXi^2 Zeta[3] )/(4*Pi)^D);
= (((CA*eta^2*gs^4*Tf)/(-pp)^(2*ep))*(-53/8 - 1/(2*ep^2) - 7/(4*ep))/(4*Pi)^D); G2qPaper
= pp FCI@SUNDelta[Glu1, Glu2] Collect2[Series[FCReplaceD[I (4 Pi)^D Cancel[(G2xPaper)/(-pp)^(-2 ep)], {D -> 4 - 2 ep}], {ep, 0, 0}] // Normal // PowerExpand, ep]
G2xPaperFinal = pp FCI@SUNDelta[Glu1, Glu2] Collect2[Series[FCReplaceD[I (4 Pi)^D Cancel[(G2qPaper)/(-pp)^(-2 ep)], {D -> 4 - 2 ep}], {ep, 0, 0}] // Normal // PowerExpand, ep] /. Tf -> 1/2 G2qPaperFinal
\text{pp} \delta ^{\text{Glu1}\;\text{Glu2}} \left(-\frac{i \;\text{eta}^2 \;\text{gs}^4 \left(\xi ^2-14 \xi -40\right) C_A^2}{32 \;\text{ep}^2}+\frac{i \;\text{eta}^2 \;\text{gs}^4 (7 \xi +166) C_A^2}{32 \;\text{ep}}-\frac{1}{64} i \;\text{eta}^2 \;\text{gs}^4 C_A^2 \left(-24 \xi ^2+9 \xi +12 \xi ^2 \zeta (3)+48 \zeta (3)-1198\right)\right)
\text{pp} \delta ^{\text{Glu1}\;\text{Glu2}} \left(-\frac{i \;\text{eta}^2 \;\text{gs}^4 C_A}{4 \;\text{ep}^2}-\frac{7 i \;\text{eta}^2 \;\text{gs}^4 C_A}{8 \;\text{ep}}-\frac{53}{16} i \;\text{eta}^2 \;\text{gs}^4 C_A\right)
= G2xPaperFinal + G2qPaperFinal resLit
\text{pp} \delta ^{\text{Glu1}\;\text{Glu2}} \left(-\frac{i \;\text{eta}^2 \;\text{gs}^4 C_A}{4 \;\text{ep}^2}-\frac{7 i \;\text{eta}^2 \;\text{gs}^4 C_A}{8 \;\text{ep}}-\frac{53}{16} i \;\text{eta}^2 \;\text{gs}^4 C_A\right)+\text{pp} \delta ^{\text{Glu1}\;\text{Glu2}} \left(-\frac{i \;\text{eta}^2 \;\text{gs}^4 \left(\xi ^2-14 \xi -40\right) C_A^2}{32 \;\text{ep}^2}+\frac{i \;\text{eta}^2 \;\text{gs}^4 (7 \xi +166) C_A^2}{32 \;\text{ep}}-\frac{1}{64} i \;\text{eta}^2 \;\text{gs}^4 C_A^2 \left(-24 \xi ^2+9 \xi +12 \xi ^2 \zeta (3)+48 \zeta (3)-1198\right)\right)
```mathematica FCCompareResults[resLit, resEp, Text -> {“to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.14-6.15:”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring -> Simplify]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];
```mathematica
\text{$\backslash $tCompare to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.14-6.15:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }21.73\text{ s.}