= "Gh -> Gh, massless QCD, 2-loops";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"TARCER", "FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
Nicer typesetting
= InsertFields[CreateTopologies[2, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
diags {U[5]} -> {U[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
[diags, ColumnsXRows -> {4, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {768, 256}]; SheetHeader
The prefactor 1/(2Pi)^(2D) for the loop integrals is understood. Notice that we ignore the first diagram (zero in DR) and the fifth diagram, since its contribution is identical to that of the fourth diagram.
[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {2, 3, 4, 6, 7, 8, 9}], Truncated -> True, GaugeRules -> {},
amp-> -I], IncomingMomenta -> {p}, OutgoingMomenta -> {p},LoopMomenta -> {q1, q2},
PreFactor -> True, ChangeDimension -> D, List -> True, SMP -> True,
UndoChiralSplittings -> True, FinalSubstitutions -> {MQU[Index[Generation, 3]] -> 0, GaugeXi[_] -> 1 - GaugeXi}]; DropSumOver
[];
FCClearScalarProducts[p, p] = pp; ScalarProduct
[1] = FCTraceFactor /@ amp[0]; amp
We simplify the color and Dirac algebra, do some partial fractioning and convert the integrals to the TRACER notation. To do this we define the following helper function
= {
RepRuleCancelQP x_. Power[Pair[Momentum[q_, dim_ : 4], Momentum[q_, dim_ : 4]], n_] *
[a___, PD[Momentum[q_, dim_ : 4], 0], b___] :>x Power[Pair[Momentum[q, dim], Momentum[q, dim]], n - 1] FeynAmpDenominator[a, b],
FeynAmpDenominator
x_. Pair[Momentum[q_, dim_ : 4], Momentum[q_, dim_ : 4]] *
[a___, PD[Momentum[q_, dim_ : 4], 0], b___] :>x FeynAmpDenominator[a, b],
FeynAmpDenominator
x_. Pair[Momentum[p_, dim_ : 4], Momentum[q_, dim_ : 4]] *
[a___, PD[Momentum[q_, dim_ : 4] - Momentum[p_, dim_ : 4], 0], b___] :>
FeynAmpDenominator-(1/2) x FeynAmpDenominator[a, b]
+ (1/2) x Pair[Momentum[p, dim], Momentum[p, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b]
+ (1/2) x Pair[Momentum[q, dim], Momentum[q, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b],
x_. Power[Pair[Momentum[p_, dim_ : 4], Momentum[q_, dim_ : 4]], n_] *
[a___, PD[Momentum[q_, dim_ : 4] - Momentum[p_, dim_ : 4], 0], b___] :>
FeynAmpDenominator-(1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1] FeynAmpDenominator[a, b]
+ (1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1] Pair[Momentum[p, dim], Momentum[p, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b]
+ (1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1] Pair[Momentum[q, dim], Momentum[q, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b]
};
ClearAll[diagCompute];
[ex_] :=
diagCompute// SUNSimplify[#] & //
ex ReplaceAll[#, DiracTrace[x__] :> DiracTrace[x, DiracTraceEvaluate -> True]] & //
// FCLoopIsolate[#, {q1, q2}, Head -> loopHead] & // ReplaceRepeated[#, RepRuleCancelQP] & //
Contract ReplaceAll[#, loopHead -> Identity] & // ToTFI[#, q1, q2, p] &;
and apply it to every single amplitude.
AbsoluteTiming[amp[2] = diagCompute /@ amp[1];]
= Cases2[amp[2], TFI];
allints // Length allints
There are 271 integrals to be done for the ghost self energy. There are several possibilities how to proceed. One possibility is to calculate the integrals one by one and save them to a file in the Database directory. This can be conveniently done using the CheckDB function. If the file “IntegralsQCDTwoLoopGhostSelfEnergy.db” does not exist the first argument of CheckDB is evaluated, otherwise the list is loaded and assigned to inttable.
Timing[inttable =
[Dispatch[
CheckDBThread[allints ->
Table[WriteString["stdout", "."];
[allints[[i]]], {i, Length[allints]}]]],
TarcerRecurse"IntegralsQCDTwoLoopGhostSelfEnergy.db"];]
Now we need to insert the calculated integrals and rewrite the whole expression into a nicer form. Note that the Tarcer two loop integrals are defined to have only 1/(Pi)^D in the measure. Therefore, we will need to multiply the full result by 1/(4Pi)^D, since we did not include the prefactor (1/(2Pi)D)2 in the very beginning.
Timing[amp[3] =
[FCI[(Collect2[#, {TAI, TBI, TJI}, Factoring -> Factor2] & /@
FeynAmpDenominatorExplicit[2] /. inttable))]];] (amp
The final result
= amp[3] //. SMP["g_s"] :> gs resFinal
Now let us compare our result with the literature. This computation can be found in A.I. Davydychev, P .Osland, O.V. Tarasov, Phys. Rev. D 58, 036007 (1998). The preprint is available at arXiv:hep-ph/9801380.
The general expression for the ghost self-energy (two-point function) is given by Eq. 2.15. What we computed is -delta^{a1 a2} p^2 G{(2)}(p2) (c.f. Eq. 6.5). The authors write G{(2)}(p2) as G{(2,q)}(p2) + G{(2,ξ)(red)}(p2) + G{(2,ξ)(irred)}(p2) (c.f. Eq 2.6), where G{(2,q)}(p2) is the contribution of the quark loops (both one-particle irreducible and one-particle reducible), G{(2,ξ)(irred)}(p2) is the one particle irreducible contribution of the gluon and ghost loops and G{(2,ξ)(red)}(p2) is the one particle reducible one.
The quark loop contribution is given by the third diagram
= resFinal[[3]] G2q
This should give us the same as Eq 6.13, with T = Nf Tf (c.f. Eq. 4.6) and eta = ( Gamma[D/2-1]^2 Gamma[3-D/2] ) / Gamma[D-3]. Remember that we must remove - delta^{ab} p^2 from our G2q and multiply it by (1/(4Pi)^D).
= (-1/(4 Pi)^D TarcerExpand[G2q, D -> 4 - 2 Epsilon, 0]) /.
G2qEval [a_, b_] -> 1 /. CA -> 2 T*CA pp SUNDelta
Our result contains SEpsilon[4 - 2*Epsilon] which is an abbreviation for Exp[-Epsilon*EulerGamma]. Since eta is given by Exp[- Epsilon*EulerGamma] (1- 1/12 Pi^2 Epsilon^2 + …) (c.f. Eq 4.7), it is clear that SEpsilon[4 - 2*Epsilon]^2 comes from there. To bring our result into the suitable form, we therefore must divide the term in the brackets by (1- 1/12 Pi^2 Epsilon2)2 or (1- Zeta2/2 Epsilon2)2 and again expand it in Epsilon. After that we can replace SEpsilon[4 - 2*Epsilon]^2 by eta^2.
= G2qEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & //
G2qFinal ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &
= (((CA*eta^2*SMP["g_s"]^4*T)/(-pp)^(2*Epsilon))*
G2qFinalPaper -53/8 - 1/(2*Epsilon^2) - 7/(4*Epsilon))/(4*Pi)^D); (
Repeat the same for G{(2,ξ)(red)}(p2) which is given by Eq. 6.14. The reducible part comes from the diagram 7, hence
= resFinal[[7]];
G2xiRed = -1/(4 Pi)^D TarcerExpand[G2xiRed, D -> 4 - 2 Epsilon, 0] //
G2xiRedEval ReplaceRepeated[#, {pp SUNDelta[a_, b_] -> 1}] &;
= G2xiRedEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & //
G2xiRedFinal ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &
= (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) *( 3 + (1 + GaugeXi/2)/Epsilon + GaugeXi +
G2xiRedPaper 4 + 4*GaugeXi + GaugeXi^2)/(16*Epsilon^2))/(4*Pi)^D); (
Finally, we still need to verify G{(2,ξ)(irred)}(p2), the irreducible contribution of the gluon and ghost loops given by the remaining diagrams and shown in Eq 6.12
= Collect2[Plus @@ Join[resFinal[[1 ;; 2]], resFinal[[4 ;; 6]]], {TBI, TJI}];
G2xiIrred = -1/(4 Pi)^D TarcerExpand[G2xiIrred, D -> 4 - 2 Epsilon, 0] //
G2xiIrredEval ReplaceRepeated[#, {pp SUNDelta[a_, b_] -> 1, Nf*Tf -> T}] &;
= G2xiIrredEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Collect[b, {SEpsilon[_], (-pp)^(-2 Epsilon)}]]] & //
G2xiIrredFinal ReplaceAll[#, Dot[a_, SEpsilon[x_]^2 (-pp)^(-2 Epsilon) b_] :> Dot[SEpsilon[x]^2 (-pp)^(-2 Epsilon) a, b]] & //
ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & //
ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &
= (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) ( 1/Epsilon (67/16 - (9*GaugeXi)/32) +
G2xiIrredPaper 1 + (3*GaugeXi)/16 - (3*GaugeXi^2)/32)/Epsilon^2 + 503/32 + (-73*GaugeXi)/64 +
(3*GaugeXi^2)/8 - (3*Zeta[3])/4 - (3*GaugeXi^2*Zeta[3])/16)/(4*Pi)^D); (
Last but not least, let us verify the full contribution of the gluon and ghost loops which is given by Eq. 6.15
= (G2xiIrredFinal + G2xiRedFinal) // ReplaceAll[#, f_ Dot[a_, b_] + f_ Dot[a_, c_] :> f Dot[a, Collect[Simplify[b + c], {1/Epsilon}]]] & G2xFinal
= (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) * ((83/16 + 7/32*GaugeXi)/Epsilon +
G2xPaper 5/4 + 7/16*GaugeXi - 1/32 GaugeXi^2)/Epsilon^2 + 599/32 - 3/4 Zeta[3] - 9/64 GaugeXi + 3/8 GaugeXi^2 - 3/16 GaugeXi^2 Zeta[3] )/
(4*Pi)^D); (
```mathematica knownResult = {G2qFinalPaper, G2xiRedPaper, G2xiIrredPaper, G2xPaper}; FCCompareResults[({G2qFinal, G2xiRedFinal, G2xiIrredFinal, G2xFinal} /. {Dot -> Times}), knownResult, Text -> {“to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.12-6.15:”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring -> Simplify]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];
```mathematica