QCD manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "Gh -> Gh, massless QCD, 2-loops";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"TARCER", "FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

FeynCalc   10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online  documentation  , check out the wiki   or visit the forum.\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

Please check our FAQ   for answers to some common FeynCalc questions and have a look at the supplied examples.\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

TARCER   2.0, for more information see the accompanying publication.   If you use TARCER in your research, please cite\text{TARCER }\;\text{2.0, for more information see the accompanying }\underline{\text{publication}.}\;\text{ If you use TARCER in your research, please cite}

  R. Mertig and R. Scharf, Comput. Phys. Commun., 111, 265-273, 1998, arXiv:hep-ph/9801383\text{ $\bullet $ R. Mertig and R. Scharf, Comput. Phys. Commun., 111, 265-273, 1998, arXiv:hep-ph/9801383}

FeynArts   3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual   or visit www.feynarts.de.\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

If you use FeynArts in your research, please cite\text{If you use FeynArts in your research, please cite}

  T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

diags = InsertFields[CreateTopologies[2, 1 -> 1, ExcludeTopologies -> {Tadpoles}], 
            {U[5]} -> {U[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"]; 
 
Paint[diags, ColumnsXRows -> {4, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {768, 256}];

12676vegamh2o

0ar9lt2oovp7p

05ip7j9hvkehi

Obtain the amplitude

The prefactor 1/(2Pi)^(2D) for the loop integrals is understood. Notice that we ignore the first diagram (zero in DR) and the fifth diagram, since its contribution is identical to that of the fourth diagram.

amp[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {2, 3, 4, 6, 7, 8, 9}], Truncated -> True, GaugeRules -> {}, 
        PreFactor -> -I], IncomingMomenta -> {p}, OutgoingMomenta -> {p},LoopMomenta -> {q1, q2}, 
    UndoChiralSplittings -> True, ChangeDimension -> D, List -> True, SMP -> True, 
    DropSumOver -> True, FinalSubstitutions -> {MQU[Index[Generation, 3]] -> 0, GaugeXi[_] -> 1 - GaugeXi}];

Fix the kinematics

FCClearScalarProducts[];
ScalarProduct[p, p] = pp;

Calculate the amplitude

amp[1] = FCTraceFactor /@ amp[0];

We simplify the color and Dirac algebra, do some partial fractioning and convert the integrals to the TRACER notation. To do this we define the following helper function

RepRuleCancelQP = {
    x_. Power[Pair[Momentum[q_, dim_ : 4], Momentum[q_, dim_ : 4]], n_] *
      FeynAmpDenominator[a___, PD[Momentum[q_, dim_ : 4], 0], b___] :>x Power[Pair[Momentum[q, dim], Momentum[q, dim]], n - 1] FeynAmpDenominator[a, b], 
    
    x_. Pair[Momentum[q_, dim_ : 4], Momentum[q_, dim_ : 4]] *
      FeynAmpDenominator[a___, PD[Momentum[q_, dim_ : 4], 0], b___] :>x FeynAmpDenominator[a, b], 
    
    x_. Pair[Momentum[p_, dim_ : 4], Momentum[q_, dim_ : 4]] *
      FeynAmpDenominator[a___, PD[Momentum[q_, dim_ : 4] - Momentum[p_, dim_ : 4], 0], b___] :>
     -(1/2) x FeynAmpDenominator[a, b] 
      + (1/2) x Pair[Momentum[p, dim], Momentum[p, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b] 
      + (1/2) x Pair[Momentum[q, dim], Momentum[q, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b], 
    
    x_. Power[Pair[Momentum[p_, dim_ : 4], Momentum[q_, dim_ : 4]], n_] *
      FeynAmpDenominator[a___, PD[Momentum[q_, dim_ : 4] - Momentum[p_, dim_ : 4], 0], b___] :>
     -(1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1]  FeynAmpDenominator[a, b] 
      + (1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1] Pair[Momentum[p, dim], Momentum[p, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b] 
      + (1/2) x Power[Pair[Momentum[p, dim], Momentum[q, dim]], n - 1] Pair[Momentum[q, dim], Momentum[q, dim]] FeynAmpDenominator[a, PD[Momentum[q, dim] - Momentum[p, dim], 0], b] 
   };
ClearAll[diagCompute];
diagCompute[ex_] := 
   ex // SUNSimplify[#] & // 
         ReplaceAll[#, DiracTrace[x__] :> DiracTrace[x, DiracTraceEvaluate -> True]] & // 
        Contract // FCLoopIsolate[#, {q1, q2}, Head -> loopHead] & // ReplaceRepeated[#, RepRuleCancelQP] & // 
     ReplaceAll[#, loopHead -> Identity] & // ToTFI[#, q1, q2, p] &;

and apply it to every single amplitude.

AbsoluteTiming[amp[2] = diagCompute /@ amp[1];]

{27.4736,Null}\{27.4736,\text{Null}\}

allints = Cases2[amp[2], TFI];
allints // Length

230230

There are 271 integrals to be done for the ghost self energy. There are several possibilities how to proceed. One possibility is to calculate the integrals one by one and save them to a file in the Database directory. This can be conveniently done using the CheckDB function. If the file “IntegralsQCDTwoLoopGhostSelfEnergy.db” does not exist the first argument of CheckDB is evaluated, otherwise the list is loaded and assigned to inttable.

Timing[inttable = 
    CheckDB[Dispatch[
            Thread[allints -> 
                Table[WriteString["stdout", "."]; 
                        TarcerRecurse[allints[[i]]], {i, Length[allints]}]]], 
            "IntegralsQCDTwoLoopGhostSelfEnergy.db"];]

{0.025075,Null}\{0.025075,\text{Null}\}

Now we need to insert the calculated integrals and rewrite the whole expression into a nicer form. Note that the Tarcer two loop integrals are defined to have only 1/(Pi)^D in the measure. Therefore, we will need to multiply the full result by 1/(4Pi)^D, since we did not include the prefactor (1/(2Pi)D)2 in the very beginning.

Timing[amp[3] = 
    FeynAmpDenominatorExplicit[FCI[(Collect2[#, {TAI, TBI, TJI}, Factoring -> Factor2] & /@ 
        (amp[2] /. inttable))]];]

{0.299235,Null}\{0.299235,\text{Null}\}

The final result

resFinal = amp[3] //. SMP["g_s"] :> gs

{(3D)  gs4CA2(2D3ξ2+21D2ξ210D2ξ68Dξ2+60Dξ8D+72ξ296ξ+32)δGlu1  Glu2J{1,0}{1,0}{1,0}(D)16(4D)2gs4ξ  ppCA2(D3(ξ)+8D2ξ2D217Dξ+6D+8ξ)δGlu1  Glu2(B{1,0}{1,0}(D))264(4D),gs4  ppCA2(Dξ3ξ+2)(3D2ξ19Dξ8D+28ξ+24)δGlu1  Glu2(B{1,0}{1,0}(D))264(4D)(3D)  gs4CA2(D(ξ)4D+4ξ+8)(Dξ3ξ+2)δGlu1  Glu2J{1,0}{1,0}{1,0}(D)8(4D)2,(2D)2  gs4CAδGlu1  Glu2J{1,0}{1,0}{1,0}(D)(4D)(6D),(2D)  gs4CA2(2Dξ2+4Dξ2D+7ξ214ξ+8)δGlu1  Glu2J{1,0}{1,0}{1,0}(D)4(4D)(6D),(3D)  gs4CA2(Dξ3ξ+2)2δGlu1  Glu2J{1,0}{1,0}{1,0}(D)4(4D),(2D)  gs4CA2(D2ξ28D2ξ9Dξ2+44Dξ16D+18ξ256ξ+24)δGlu1  Glu2J{1,0}{1,0}{1,0}(D)8(4D)(6D),116  gs4  ppCA2(Dξ3ξ+2)2δGlu1  Glu2(B{1,0}{1,0}(D))2}\left\{\frac{(3-D) \;\text{gs}^4 C_A^2 \left(-2 D^3 \xi ^2+21 D^2 \xi ^2-10 D^2 \xi -68 D \xi ^2+60 D \xi -8 D+72 \xi ^2-96 \xi +32\right) \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{16 (4-D)^2}-\frac{\text{gs}^4 \xi \;\text{pp} C_A^2 \left(D^3 (-\xi )+8 D^2 \xi -2 D^2-17 D \xi +6 D+8 \xi \right) \delta ^{\text{Glu1}\;\text{Glu2}} \left(\pmb{B}_{\{1,0\}\{1,0\}}^{(D)}\right){}^2}{64 (4-D)},\frac{\text{gs}^4 \;\text{pp} C_A^2 (D \xi -3 \xi +2) \left(3 D^2 \xi -19 D \xi -8 D+28 \xi +24\right) \delta ^{\text{Glu1}\;\text{Glu2}} \left(\pmb{B}_{\{1,0\}\{1,0\}}^{(D)}\right){}^2}{64 (4-D)}-\frac{(3-D) \;\text{gs}^4 C_A^2 (D (-\xi )-4 D+4 \xi +8) (D \xi -3 \xi +2) \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{8 (4-D)^2},\frac{(2-D)^2 \;\text{gs}^4 C_A \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{(4-D) (6-D)},\frac{(2-D) \;\text{gs}^4 C_A^2 \left(-2 D \xi ^2+4 D \xi -2 D+7 \xi ^2-14 \xi +8\right) \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{4 (4-D) (6-D)},\frac{(3-D) \;\text{gs}^4 C_A^2 (D \xi -3 \xi +2)^2 \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{4 (4-D)},-\frac{(2-D) \;\text{gs}^4 C_A^2 \left(D^2 \xi ^2-8 D^2 \xi -9 D \xi ^2+44 D \xi -16 D+18 \xi ^2-56 \xi +24\right) \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{8 (4-D) (6-D)},\frac{1}{16} \;\text{gs}^4 \;\text{pp} C_A^2 (D \xi -3 \xi +2)^2 \delta ^{\text{Glu1}\;\text{Glu2}} \left(\pmb{B}_{\{1,0\}\{1,0\}}^{(D)}\right){}^2\right\}

Check the final results

Now let us compare our result with the literature. This computation can be found in A.I. Davydychev, P .Osland, O.V. Tarasov, Phys. Rev. D 58, 036007 (1998). The preprint is available at arXiv:hep-ph/9801380.

The general expression for the ghost self-energy (two-point function) is given by Eq. 2.15. What we computed is -delta^{a1 a2} p^2 G{(2)}(p2) (c.f. Eq. 6.5). The authors write G{(2)}(p2) as G{(2,q)}(p2) + G{(2,ξ)(red)}(p2) + G{(2,ξ)(irred)}(p2) (c.f. Eq 2.6), where G{(2,q)}(p2) is the contribution of the quark loops (both one-particle irreducible and one-particle reducible), G{(2,ξ)(irred)}(p2) is the one particle irreducible contribution of the gluon and ghost loops and G{(2,ξ)(red)}(p2) is the one particle reducible one.

The quark loop contribution is given by the third diagram

G2q = resFinal[[3]]

(2D)2  gs4CAδGlu1  Glu2J{1,0}{1,0}{1,0}(D)(4D)(6D)\frac{(2-D)^2 \;\text{gs}^4 C_A \delta ^{\text{Glu1}\;\text{Glu2}} \pmb{J}_{\{1,0\}\{1,0\}\{1,0\}}^{(D)}}{(4-D) (6-D)}

This should give us the same as Eq 6.13, with T = Nf Tf (c.f. Eq. 4.6) and eta = ( Gamma[D/2-1]^2 Gamma[3-D/2] ) / Gamma[D-3]. Remember that we must remove - delta^{ab} p^2 from our G2q and multiply it by (1/(4Pi)^D).

G2qEval = (-1/(4 Pi)^D TarcerExpand[G2q, D -> 4 - 2 Epsilon, 0]) /. 
    pp SUNDelta[a_, b_] -> 1 /. CA -> 2 T*CA

(4π)D(2  gs4TCA(pp)2εSε2).(78ε+14ε2ζ(2)4+5316)-(4 \pi )^{-D} \left(2 \;\text{gs}^4 T C_A (-\text{pp})^{-2 \varepsilon } \pmb{S_{\varepsilon }}{}^2\right).\left(\frac{7}{8 \varepsilon }+\frac{1}{4 \varepsilon ^2}-\frac{\zeta (2)}{4}+\frac{53}{16}\right)

Our result contains SEpsilon[4 - 2*Epsilon] which is an abbreviation for Exp[-Epsilon*EulerGamma]. Since eta is given by Exp[- Epsilon*EulerGamma] (1- 1/12 Pi^2 Epsilon^2 + …) (c.f. Eq 4.7), it is clear that SEpsilon[4 - 2*Epsilon]^2 comes from there. To bring our result into the suitable form, we therefore must divide the term in the brackets by (1- 1/12 Pi^2 Epsilon2)2 or (1- Zeta2/2 Epsilon2)2 and again expand it in Epsilon. After that we can replace SEpsilon[4 - 2*Epsilon]^2 by eta^2.

G2qFinal = G2qEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & // 
   ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &

(4π)D(2  eta2TCAgs4(pp)2ε).(78ε+14ε2+5316)-(4 \pi )^{-D} \left(2 \;\text{eta}^2 T C_A g_s^4 (-\text{pp})^{-2 \varepsilon }\right).\left(\frac{7}{8 \varepsilon }+\frac{1}{4 \varepsilon ^2}+\frac{53}{16}\right)

G2qFinalPaper = (((CA*eta^2*SMP["g_s"]^4*T)/(-pp)^(2*Epsilon))*
        (-53/8 - 1/(2*Epsilon^2) - 7/(4*Epsilon))/(4*Pi)^D);

Repeat the same for G{(2,ξ)(red)}(p2) which is given by Eq. 6.14. The reducible part comes from the diagram 7, hence

G2xiRed = resFinal[[7]];
G2xiRedEval = -1/(4 Pi)^D TarcerExpand[G2xiRed, D -> 4 - 2 Epsilon, 0] // 
    ReplaceRepeated[#, {pp SUNDelta[a_, b_] -> 1}] &;
G2xiRedFinal = G2xiRedEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & // 
   ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &

(4π)D(eta2CA2gs4(pp)2ε).(ξ21ε+ξ24ξ416ε2ξ3)-(4 \pi )^{-D} \left(\text{eta}^2 C_A^2 g_s^4 (-\text{pp})^{-2 \varepsilon }\right).\left(\frac{-\frac{\xi }{2}-1}{\varepsilon }+\frac{-\xi ^2-4 \xi -4}{16 \varepsilon ^2}-\xi -3\right)

G2xiRedPaper = (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) *( 3 + (1 + GaugeXi/2)/Epsilon + GaugeXi + 
            (4 + 4*GaugeXi + GaugeXi^2)/(16*Epsilon^2))/(4*Pi)^D);

Finally, we still need to verify G{(2,ξ)(irred)}(p2), the irreducible contribution of the gluon and ghost loops given by the remaining diagrams and shown in Eq 6.12

G2xiIrred = Collect2[Plus @@ Join[resFinal[[1 ;; 2]], resFinal[[4 ;; 6]]], {TBI, TJI}];
G2xiIrredEval = -1/(4 Pi)^D TarcerExpand[G2xiIrred, D -> 4 - 2 Epsilon, 0] // 
    ReplaceRepeated[#, {pp SUNDelta[a_, b_] -> 1, Nf*Tf -> T}] &;
G2xiIrredFinal = G2xiIrredEval // ReplaceAll[#, Dot[a_, b_] :> Dot[a, Collect[b, {SEpsilon[_], (-pp)^(-2 Epsilon)}]]] & // 
     ReplaceAll[#, Dot[a_, SEpsilon[x_]^2 (-pp)^(-2 Epsilon) b_] :> Dot[SEpsilon[x]^2 (-pp)^(-2 Epsilon) a, b]] & // 
    ReplaceAll[#, Dot[a_, b_] :> Dot[a, Normal[Series[b/(1 - Zeta2/2 Epsilon^2)^2, {Epsilon, 0, 0}]]]] & // 
   ReplaceAll[#, {SEpsilon[4 - 2*Epsilon]^2 -> eta^2, gs -> SMP["g_s"]}] &

(4π)D(eta2CA2gs4(pp)2ε).(9ξ326716ε+3ξ2323ξ161ε2+164(24ξ2+73ξ+12ξ2ζ(3)+48ζ(3)1006))-(4 \pi )^{-D} \left(\text{eta}^2 C_A^2 g_s^4 (-\text{pp})^{-2 \varepsilon }\right).\left(\frac{\frac{9 \xi }{32}-\frac{67}{16}}{\varepsilon }+\frac{\frac{3 \xi ^2}{32}-\frac{3 \xi }{16}-1}{\varepsilon ^2}+\frac{1}{64} \left(-24 \xi ^2+73 \xi +12 \xi ^2 \zeta (3)+48 \zeta (3)-1006\right)\right)

G2xiIrredPaper = (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) (  1/Epsilon (67/16 - (9*GaugeXi)/32) + 
            (1 + (3*GaugeXi)/16 - (3*GaugeXi^2)/32)/Epsilon^2 + 503/32 + (-73*GaugeXi)/64 + 
        (3*GaugeXi^2)/8 - (3*Zeta[3])/4 - (3*GaugeXi^2*Zeta[3])/16)/(4*Pi)^D);

Last but not least, let us verify the full contribution of the gluon and ghost loops which is given by Eq. 6.15

G2xFinal = (G2xiIrredFinal + G2xiRedFinal) // ReplaceAll[#, f_ Dot[a_, b_] + f_ Dot[a_, c_] :> f Dot[a, Collect[Simplify[b + c], {1/Epsilon}]]] &

(4π)D(eta2CA2gs4(pp)2ε).(7ξ+16632ε+ξ214ξ4032ε2+164(9ξ+12ξ2(ζ(3)2)+48ζ(3)1198))-(4 \pi )^{-D} \left(\text{eta}^2 C_A^2 g_s^4 (-\text{pp})^{-2 \varepsilon }\right).\left(-\frac{7 \xi +166}{32 \varepsilon }+\frac{\xi ^2-14 \xi -40}{32 \varepsilon ^2}+\frac{1}{64} \left(9 \xi +12 \xi ^2 (\zeta (3)-2)+48 \zeta (3)-1198\right)\right)

G2xPaper = (((CA^2*eta^2*SMP["g_s"]^4)/(-pp)^(2*Epsilon)) * ((83/16 + 7/32*GaugeXi)/Epsilon + 
            (5/4 + 7/16*GaugeXi - 1/32 GaugeXi^2)/Epsilon^2 + 599/32 - 3/4 Zeta[3] - 9/64 GaugeXi + 3/8 GaugeXi^2 - 3/16 GaugeXi^2 Zeta[3] )/
        (4*Pi)^D);

```mathematica knownResult = {G2qFinalPaper, G2xiRedPaper, G2xiIrredPaper, G2xPaper}; FCCompareResults[({G2qFinal, G2xiRedFinal, G2xiIrredFinal, G2xFinal} /. {Dot -> Times}), knownResult, Text -> {“to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.12-6.15:”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring -> Simplify]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];

```mathematica

\tCompare to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.12-6.15:  CORRECT.\text{$\backslash $tCompare to Davydychev, Osland and Tarasov, hep-ph/9801380, Eqs. 6.12-6.15:} \;\text{CORRECT.}

\tCPU Time used: 52.239 s.\text{$\backslash $tCPU Time used: }52.239\text{ s.}