= "Qi Qj -> Qi Qj, QCD, matrix element squared, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], F[3, {2}]} ->
diags {F[3, {1}], F[3, {2}]}, InsertionLevel -> {Classes}, Model -> "SMQCD",
-> {S[_], V[1 | 2]}];
ExcludeParticles
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
amp-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True]
-\frac{g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu5}} T_{\text{Col4}\;\text{Col2}}^{\text{Glu5}} \left(\varphi (\overline{k_2},m_c)\right).\bar{\gamma }^{\text{Lor2}}.\left(\varphi (\overline{p_2},m_c)\right) \left(\varphi (\overline{k_1},m_u)\right).\bar{\gamma }^{\text{Lor2}}.\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_2}-\overline{p_2}){}^2}
[];
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2, SMP["m_u"], SMP["m_c"],
SetMandelstam["m_u"], SMP["m_c"]]; SMP
[0] = 1/(SUNN^2) (amp[0] (ComplexConjugate[amp[0]])) //
ampSquared// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF // TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2 + 2 SMP["m_c"]^2}] & //Simplify DiracSimplify
\frac{\left(N^2-1\right) g_s^4 \left(-4 m_c^2 \left(u-m_u^2\right)+2 m_c^4+2 m_u^4-4 u m_u^2+t^2+2 t u+2 u^2\right)}{2 N^2 t^2}
[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_u" | "m_c"] -> 0}] & //
ampSquaredMassless[#, {s, t, u, 0}] & TrickMandelstam
-\frac{\left(1-N^2\right) g_s^4 \left(s^2+u^2\right)}{2 N^2 t^2}
[0] = ampSquaredMassless[0] /. SUNN -> 3 ampSquaredMasslessSUNN3
\frac{4 g_s^4 \left(s^2+u^2\right)}{9 t^2}
= {
knownResults 4/9) SMP["g_s"]^4 (s^2 + u^2)/t^2)
((};
[{ampSquaredMasslessSUNN3[0]}, {knownResults},
FCCompareResultsText -> {"\tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring ->
Function[x, Simplify[TrickMandelstam[x, {s, t, u, 0}]]]]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }16.723\text{ s.}