= "Q Qbar -> Gl Gl with ghosts, QCD, matrix element squared, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], -F[3, {1}]} ->
diags {V[5], V[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], -F[3, {1}]} ->
diagsGh1 {-U[5], U[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
[diagsGh1, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], -F[3, {1}]} ->
diagsGh2 {U[5], -U[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
[diagsGh2, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
amp-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True]
-\frac{g_s^2 T_{\text{Col5}\;\text{Col1}}^{\text{Glu3}} T_{\text{Col2}\;\text{Col5}}^{\text{Glu4}} \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{k_2}-\overline{p_2}\right)+m_u\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_1\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{p_2}-\overline{k_2}){}^2-m_u^2}-\frac{g_s^2 T_{\text{Col5}\;\text{Col1}}^{\text{Glu4}} T_{\text{Col2}\;\text{Col5}}^{\text{Glu3}} \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_1\right)\right).\left(\bar{\gamma }\cdot \left(\overline{k_1}-\overline{p_2}\right)+m_u\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{p_2}-\overline{k_1}){}^2-m_u^2}+\frac{i g_s^2 T_{\text{Col2}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu3}\;\text{Glu4}\;\text{Glu5}} \left(\overline{k_1}\cdot \bar{\varepsilon }^*\left(k_1\right)+2 \left(\overline{k_2}\cdot \bar{\varepsilon }^*\left(k_1\right)\right)\right) \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}+\overline{k_2}){}^2}+\frac{i g_s^2 T_{\text{Col2}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu3}\;\text{Glu4}\;\text{Glu5}} \left(-2 \left(\overline{k_1}\cdot \bar{\varepsilon }^*\left(k_2\right)\right)-\overline{k_2}\cdot \bar{\varepsilon }^*\left(k_2\right)\right) \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_1\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}+\overline{k_2}){}^2}+\frac{i g_s^2 T_{\text{Col2}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu3}\;\text{Glu4}\;\text{Glu5}} \left(\bar{\varepsilon }^*\left(k_1\right)\cdot \bar{\varepsilon }^*\left(k_2\right)\right) \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \left(\overline{k_1}-\overline{k_2}\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}+\overline{k_2}){}^2}
[0] = FCFAConvert[CreateFeynAmp[diagsGh1], IncomingMomenta -> {p1, p2},
ampGh1-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True]
\frac{i g_s^2 T_{\text{Col2}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu3}\;\text{Glu4}\;\text{Glu5}} \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \overline{k_2}\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}+\overline{k_2}){}^2}
[0] = FCFAConvert[CreateFeynAmp[diagsGh2], IncomingMomenta -> {p1, p2},
ampGh2-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True]
\frac{i g_s^2 T_{\text{Col2}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu3}\;\text{Glu4}\;\text{Glu5}} \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \overline{k_1}\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}+\overline{k_2}){}^2}
[];
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2, SMP["m_u"], SMP["m_u"], 0, 0]; SetMandelstam
[0] = 1/(SUNN^2) (amp[0] (ComplexConjugate[amp[0]])) //
ampSquaredUnphys// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF // DoPolarizationSums[#, k1, 0] & //
DiracSimplify [#, k2, 0] & // TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2}] & //
DoPolarizationSumsSimplify
\frac{1}{2 N^3 s^2 \left(u-m_u^2\right){}^2 \left(t-m_u^2\right){}^2}\left(N^2-1\right) g_s^4 \left(m_u^8 \left(N^2 \left(3 t^2+37 t u+3 u^2\right)+6 s^2\right)+m_u^4 \left(N^2 \left(5 t^4+35 t^3 u+43 t^2 u^2+35 t u^3+5 u^4\right)-s^2 \left(3 t^2+14 t u+3 u^2\right)\right)-m_u^2 (t+u) \left(N^2 \left(t^4+8 t^3 u+5 t^2 u^2+8 t u^3+u^4\right)-s^2 \left(t^2+6 t u+u^2\right)\right)-3 N^2 m_u^6 \left(3 t^3+19 t^2 u+19 t u^2+3 u^3\right)+9 N^2 m_u^{10} (t+u)-11 N^2 m_u^{12}+t u \left(N^2 \left(t^4+3 t^2 u^2+u^4\right)-s^2 \left(t^2+u^2\right)\right)\right)
[0] = 1/(SUNN^2) (ampGh1[0] (ComplexConjugate[ampGh1[0]])) //
ampSquaredGh1// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF // TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2}] & //
DiracSimplify Simplify
-\frac{\left(N^2-1\right) g_s^4 \left(m_u^2-u\right) \left(t-m_u^2\right)}{4 N s^2}
[0] = 1/(SUNN^2) (ampGh1[0] (ComplexConjugate[ampGh1[0]])) //
ampSquaredGh2// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF // TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2}] & //
DiracSimplify Simplify
-\frac{\left(N^2-1\right) g_s^4 \left(m_u^2-u\right) \left(t-m_u^2\right)}{4 N s^2}
Subtract unphysical degrees of freedom using ghost contributions
[0] = ampSquaredUnphys[0] - ampSquaredGh1[0] - ampSquaredGh2[0] // Together ampSquared
\frac{1}{2 N^3 s^2 \left(m_u^2-u\right){}^2 \left(t-m_u^2\right){}^2}\left(N^2-1\right) g_s^4 \left(-N^2 t^5 m_u^2+5 N^2 t^4 m_u^4-9 N^2 t^4 u m_u^2-10 N^2 t^3 u^2 m_u^2-8 N^2 t^3 m_u^6+32 N^2 t^3 u m_u^4-10 N^2 t^2 u^3 m_u^2+34 N^2 t^2 u^2 m_u^4-48 N^2 t^2 u m_u^6-9 N^2 t u^4 m_u^2+32 N^2 t u^3 m_u^4-48 N^2 t u^2 m_u^6+12 N^2 t m_u^{10}+28 N^2 t u m_u^8-N^2 u^5 m_u^2+5 N^2 u^4 m_u^4-8 N^2 u^3 m_u^6-12 N^2 m_u^{12}+12 N^2 u m_u^{10}+s^2 t^3 m_u^2-3 s^2 t^2 m_u^4+7 s^2 t^2 u m_u^2+7 s^2 t u^2 m_u^2-14 s^2 t u m_u^4+s^2 u^3 m_u^2-3 s^2 u^2 m_u^4+6 s^2 m_u^8+N^2 t^5 u+2 N^2 t^3 u^3+N^2 t u^5-s^2 t^3 u-s^2 t u^3\right)
[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_u"] -> 0}] & //
ampSquaredMassless[#, {s, t, u, 0}] & TrickMandelstam
\frac{\left(1-N^2\right) g_s^4 \left(t^2+u^2\right) \left(-N^2 t^2-N^2 u^2+s^2\right)}{2 N^3 s^2 t u}
[0] = ampSquaredMassless[0] /. SUNN -> 3 ampSquaredMasslessSUNN3
-\frac{4 g_s^4 \left(t^2+u^2\right) \left(s^2-9 t^2-9 u^2\right)}{27 s^2 t u}
= {
knownResults 32/27) SMP["g_s"]^4 (t^2 + u^2)/(t u) - (8/3) SMP["g_s"]^4 (t^2 + u^2)/(s^2)
(};
[{ampSquaredMasslessSUNN3[0]}, {knownResults},
FCCompareResultsText -> {"\tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:", "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring ->
Function[x, Simplify[TrickMandelstam[x, {s, t, u, 0}]]]]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }33.796\text{ s.}