QCD manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "Q Gl -> Q Gl, QCD, matrix element squared, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

\text{If you use FeynArts in your research, please cite}

\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], V[5]} -> 
            {F[3, {1}], V[5]}, InsertionLevel -> {Classes}, Model -> "SMQCD"]; 
 
Paint[diags, ColumnsXRows -> {2, 2}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 512}];

1ugxu0yezpt32

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, k1}, 
    OutgoingMomenta -> {p2, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4, 
    TransversePolarizationVectors -> {k1, k2}, List -> False, SMP -> True, 
    Contract -> True, DropSumOver -> True]

-\frac{g_s^2 T_{\text{Col5}\;\text{Col1}}^{\text{Glu2}} T_{\text{Col3}\;\text{Col5}}^{\text{Glu4}} \left(\varphi (\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{k_2}+\overline{p_2}\right)+m_u\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(k_1\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(-\overline{k_2}-\overline{p_2}){}^2-m_u^2}-\frac{g_s^2 T_{\text{Col5}\;\text{Col1}}^{\text{Glu4}} T_{\text{Col3}\;\text{Col5}}^{\text{Glu2}} \left(\varphi (\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(k_1\right)\right).\left(\bar{\gamma }\cdot \left(\overline{p_2}-\overline{k_1}\right)+m_u\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_1}-\overline{p_2}){}^2-m_u^2}+\frac{2 i g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu2}\;\text{Glu4}\;\text{Glu5}} \left(\overline{k_1}\cdot \bar{\varepsilon }^*\left(k_2\right)\right) \left(\varphi (\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(k_1\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_2}-\overline{k_1}){}^2}+\frac{2 i g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu2}\;\text{Glu4}\;\text{Glu5}} \left(\overline{k_2}\cdot \bar{\varepsilon }\left(k_1\right)\right) \left(\varphi (\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(k_2\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_2}-\overline{k_1}){}^2}+\frac{i g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu5}} f^{\text{Glu2}\;\text{Glu4}\;\text{Glu5}} \left(\bar{\varepsilon }\left(k_1\right)\cdot \bar{\varepsilon }^*\left(k_2\right)\right) \left(\varphi (\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \left(-\overline{k_1}-\overline{k_2}\right)\right).\left(\varphi (\overline{p_1},m_u)\right)}{(\overline{k_2}-\overline{k_1}){}^2}

Fix the kinematics

FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, k1, -p2, -k2, SMP["m_u"], 0, SMP["m_u"], 0];

Square the amplitude

ampSquared[0] = 1/(SUNN (SUNN^2 - 1)) (amp[0] (ComplexConjugate[amp[0]])) // 
            FeynAmpDenominatorExplicit // SUNSimplify[#, Explicit -> True, 
            SUNNToCACF -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2] & // 
        DiracSimplify // DoPolarizationSums[#, k1, k2, 
        ExtraFactor -> 1/2] & // DoPolarizationSums[#, k2, k1] & // 
    TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2}] & // Simplify

\frac{g_s^4 \left(-m_u^4 \left(3 s^2+14 s u+3 u^2\right)+m_u^2 \left(s^3+7 s^2 u+7 s u^2+u^3\right)+6 m_u^8-s u \left(s^2+u^2\right)\right) \left(-2 N^2 m_u^2 (s+u)+2 N^2 m_u^4+N^2 s^2+N^2 u^2-t^2\right)}{2 N^2 t^2 \left(u-m_u^2\right){}^2 \left(s-m_u^2\right){}^2}

ampSquaredMassless[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_u"] -> 0}] & // 
    Simplify

-\frac{g_s^4 \left(s^2+u^2\right) \left(N^2 s^2+N^2 u^2-t^2\right)}{2 N^2 s t^2 u}

ampSquaredMasslessSUNN3[0] = ampSquaredMassless[0] /. SUNN -> 3

-\frac{g_s^4 \left(s^2+u^2\right) \left(9 s^2-t^2+9 u^2\right)}{18 s t^2 u}

Check the final results

knownResults = {
    -(4/9) SMP["g_s"]^4 (s^2 + u^2)/(s u) + SMP["g_s"]^4 (u^2 + s^2)/(t^2) 
   };
FCCompareResults[{ampSquaredMasslessSUNN3[0]}, {knownResults}, 
  Text -> {"\tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:", 
    "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}, Factoring -> 
   Function[x, Simplify[TrickMandelstam[x, {s, t, u, 0}]]]]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];

\text{$\backslash $tCompare to Ellis, Stirling and Weber, QCD and Collider Physics, Table 7.1:} \;\text{CORRECT.}

\text{True}

\text{$\backslash $tCPU Time used: }31.846\text{ s.}