Load
FeynCalc and the necessary add-ons or other packages
description = "Q Ga -> Gl Q, QCD, matrix element squared, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[3, {1}], V[1]} ->
{V[5], F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
TransversePolarizationVectors -> {k1}, List -> False, SMP -> True,
Contract -> True, DropSumOver -> True, Prefactor -> 3/2 SMP["e_Q"]]
−(−k1−k2)2−mu2eeQgsTCol4Col1Glu3(φ(k2,mu)).(γˉ⋅εˉ∗(k1)).(γˉ⋅(k1+k2)+mu).(γˉ⋅εˉ(p2)).(φ(p1,mu))−(p2−k2)2−mu2eeQgsTCol4Col1Glu3(φ(k2,mu)).(γˉ⋅εˉ(p2)).(γˉ⋅(k2−p2)+mu).(γˉ⋅εˉ∗(k1)).(φ(p1,mu))
Fix the kinematics
FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2, SMP["m_u"], qQ, 0, SMP["m_u"]];
Square the amplitude
Now come the usual steps, but with some special features. We do not
average over the polarizations of the virtual photon, but use the gauge
trick for the sum over its polarizations. In this case the sum goes over
all 4 unphysical polarizations, not just 2.
ampSquared[0] = 1/(SUNN) (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // SUNSimplify[#, Explicit -> True,
SUNNToCACF -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2] & //
DiracSimplify // DoPolarizationSums[#, p2, 0,
VirtualBoson -> True] & // DoPolarizationSums[#, k1, p2] & //
TrickMandelstam[#, {s, t, u, 2 SMP["m_u"]^2 + qQ^2}] & // Simplify
N(s−mu2)2(t−mu2)22e2(N2−1)eQ2gs2(−mu4(2qQ4−2qQ2(s+t)+3s2+14st+3t2)+mu2(2qQ4(s+t)−8qQ2st+s3+7s2t+7st2+t3)+6mu8−st(2qQ4−2qQ2(s+t)+s2+t2))
ampSquaredMassless[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_u"] -> 0}] & //
TrickMandelstam[#, {s, t, u, qQ^2}] &
Nst2e2(1−N2)eQ2gs2(qQ4−2qQ2t+2t2+2tu+u2)
ampSquaredMasslessSUNN3[0] =
Simplify[ampSquaredMassless[0] /. SUNN -> 3 /. u -> qQ^2 - s - t /. qQ -> I Q]
−3st16e2eQ2gs2(2Q4+2Q2(s+t)+s2+t2)
Check the final results
```mathematica knownResults = { (16/3) SMP[“e”]^2 SMP[“e_Q”]^2
SMP[“g_s”]^2 (-t/s - s/t - 2 Q^2 (s + t + Q^2)/(t s)) };
FCCompareResults[{ampSquaredMasslessSUNN3[0]}, {knownResults}, Text
-> {“with R. Field, Applications of Perturbative QCD, Eq 4.3.10:”,
“CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print[“Time used:”, Round[N[TimeUsed[], 3], 0.001], ” s.”];
```mathematica
\tCheck with R. Field, Applications of Perturbative QCD, Eq 4.3.10:CORRECT.
\tCPU Time used: 21.478 s.