= "Mu Amu -> Q Qbar, QCD, total cross section, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {2}], -F[2, {2}]} ->
diags {F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD",
-> {S[_], V[2]}];
ExcludeParticles
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
amp-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
-> 3/2 SMP["e_Q"]] Prefactor
\frac{\text{e}^2 e_Q \delta _{\text{Col3}\;\text{Col4}} \left(\varphi (\overline{k_1},m_u)\right).\bar{\gamma }^{\text{Lor1}}.\left(\varphi (-\overline{k_2},m_u)\right) \left(\varphi (-\overline{p_2},m_{\mu })\right).\bar{\gamma }^{\text{Lor1}}.\left(\varphi (\overline{p_1},m_{\mu })\right)}{(\overline{k_1}+\overline{k_2}){}^2}
[];
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2, SMP["m_mu"], SMP["m_mu"],
SetMandelstam["m_u"], SMP["m_u"]]; SMP
[0] = (amp[0] (ComplexConjugate[amp[0]])) //
ampSquared// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF //
DiracSimplify [#, {s, t, u, 2 SMP["m_u"]^2 + 2 SMP["m_mu"]^2}] & // Simplify TrickMandelstam
\frac{2 \;\text{e}^4 N e_Q^2 \left(2 m_{\mu }^4-4 m_{\mu }^2 \left(u-m_u^2\right)+2 m_u^4-4 u m_u^2+s^2+2 s u+2 u^2\right)}{s^2}
[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_u" | "m_mu"] -> 0}] & //
ampSquaredMassless[#, {s, t, u, 0}] & TrickMandelstam
\frac{2 \;\text{e}^4 N e_Q^2 \left(t^2+u^2\right)}{s^2}
[0] = ampSquaredMassless[0] /. SUNN -> 3 ampSquaredMasslessSUNN3
\frac{6 \;\text{e}^4 e_Q^2 \left(t^2+u^2\right)}{s^2}
= Integrate[Simplify[ampSquaredMasslessSUNN3[0]/(s/4) /.
integral u -> -s - t], {t, -s, 0}] /. SMP["e"]^4 -> (4 Pi SMP["alpha_fs"])^2
256 \pi ^2 \alpha ^2 e_Q^2
= 2 Pi/(128 Pi^2 s) prefac
\frac{1}{64 \pi s}
The total cross-section
= integral*prefac // PowerExpand // Factor2 crossSectionTotal
\frac{4 \pi \alpha ^2 e_Q^2}{s}
= {
knownResults 6*(t^2 + u^2)*SMP["e"]^4*SMP["e_Q"]^2)/(s^2),
(4*Pi*SMP["alpha_fs"]^2*SMP["e_Q"]^2)/s
(};
[{ampSquaredMasslessSUNN3[0], crossSectionTotal},
FCCompareResults,
knownResultsText -> {"\tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }21.975\text{ s.}