Load
FeynCalc and the necessary add-ons or other packages
description = "Ga^* -> Q Qbar Gl, QCD, total decay rate, tree" ;
If [ $FrontEnd === Null ,
$FeynCalcStartupMessages = False ;
Print [ description] ;
] ;
If [ $Notebooks === False ,
$FeynCalcStartupMessages = False
] ;
$LoadAddOns = { "FeynArts" } ;
<< FeynCalc`
$FAVerbose = 0 ;
FCCheckVersion[ 9 , 3 , 1 ] ;
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation ‾ , check out the wiki ‾ or visit the forum . ‾ \text{FeynCalc }\;\text{10.0.0 (dev
version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the
}\underline{\text{online} \;\text{documentation}}\;\text{, check out the
}\underline{\text{wiki}}\;\text{ or visit the
}\underline{\text{forum}.} FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation , check out the wiki or visit the forum .
Please check our FAQ ‾ for answers to some common FeynCalc questions and have a look at the supplied examples . ‾ \text{Please check our
}\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc
questions and have a look at the supplied
}\underline{\text{examples}.} Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples .
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software. \text{If you use FeynCalc in your
research, please evaluate FeynCalcHowToCite[] to learn how to cite this
software.} If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package! \text{Please keep in mind that the proper
academic attribution of our work is crucial to ensure the future
development of this package!} Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual ‾ or visit www . feynarts . de . ‾ \text{FeynArts }\;\text{3.11 (3 Aug 2020)
patched for use with FeynCalc, for documentation see the
}\underline{\text{manual}}\;\text{ or visit
}\underline{\text{www}.\text{feynarts}.\text{de}.} FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www . feynarts . de .
If you use FeynArts in your research, please cite \text{If you use FeynArts in your
research, please cite} If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260 \text{ $\bullet $ T. Hahn, Comput. Phys.
Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260} ∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes [ k1, TraditionalForm ] := " \!\(\* SubscriptBox[ \( k \) , \( 1 \) ] \) " ;
MakeBoxes [ k2, TraditionalForm ] := " \!\(\* SubscriptBox[ \( k \) , \( 2 \) ] \) " ;
MakeBoxes [ k3, TraditionalForm ] := " \!\(\* SubscriptBox[ \( k \) , \( 3 \) ] \) " ;
diags = InsertFields[ CreateTopologies[ 0 , 1 -> 3 ], { V [ 1 ]} ->
{ F [ 3 , { 1 }], - F [ 3 , { 1 }], V [ 5 ]}, InsertionLevel -> { Classes},
Model -> "SMQCD" ] ;
Paint[ diags, ColumnsXRows -> { 2 , 1 }, Numbering -> Simple,
SheetHeader -> None , ImageSize -> { 512 , 256 }] ;
Obtain the amplitude
amp[ 0 ] = FCFAConvert[ CreateFeynAmp[ diags], IncomingMomenta -> { p },
OutgoingMomenta -> { k1, k2, k3}, UndoChiralSplittings -> True ,
ChangeDimension -> 4 ,
List -> False , SMP -> True , Contract -> True , DropSumOver -> True ,
Prefactor -> 3 / 2 SMP[ "e_Q" ], FinalSubstitutions -> { SMP[ "m_u" ] -> SMP[ "m_q" ]}]
e e Q g s T Col2 Col3 Glu4 ( φ ( k 1 ‾ , m q ) ) . ( γ ˉ ⋅ ε ˉ ∗ ( k 3 ) ) . ( γ ˉ ⋅ ( k 1 ‾ + k 3 ‾ ) + m q ) . ( γ ˉ ⋅ ε ˉ ( p ) ) . ( φ ( − k 2 ‾ , m q ) ) ( − k 1 ‾ − k 3 ‾ ) 2 − m q 2 + e e Q g s T Col2 Col3 Glu4 ( φ ( k 1 ‾ , m q ) ) . ( γ ˉ ⋅ ε ˉ ( p ) ) . ( γ ˉ ⋅ ( − k 2 ‾ − k 3 ‾ ) + m q ) . ( γ ˉ ⋅ ε ˉ ∗ ( k 3 ) ) . ( φ ( − k 2 ‾ , m q ) ) ( k 2 ‾ + k 3 ‾ ) 2 − m q 2 \frac{\text{e} e_Q g_s
T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi
(\overline{k_1},m_q)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon
}^*\left(k_3\right)\right).\left(\bar{\gamma }\cdot
\left(\overline{k_1}+\overline{k_3}\right)+m_q\right).\left(\bar{\gamma
}\cdot \bar{\varepsilon }(p)\right).\left(\varphi
(-\overline{k_2},m_q)\right)}{(-\overline{k_1}-\overline{k_3}){}^2-m_q^2}+\frac{\text{e}
e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi
(\overline{k_1},m_q)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon
}(p)\right).\left(\bar{\gamma }\cdot
\left(-\overline{k_2}-\overline{k_3}\right)+m_q\right).\left(\bar{\gamma
}\cdot \bar{\varepsilon }^*\left(k_3\right)\right).\left(\varphi
(-\overline{k_2},m_q)\right)}{(\overline{k_2}+\overline{k_3}){}^2-m_q^2} ( − k 1 − k 3 ) 2 − m q 2 e e Q g s T Col2 Col3 Glu4 ( φ ( k 1 , m q ) ) . ( γ ˉ ⋅ ε ˉ ∗ ( k 3 ) ) . ( γ ˉ ⋅ ( k 1 + k 3 ) + m q ) . ( γ ˉ ⋅ ε ˉ ( p ) ) . ( φ ( − k 2 , m q ) ) + ( k 2 + k 3 ) 2 − m q 2 e e Q g s T Col2 Col3 Glu4 ( φ ( k 1 , m q ) ) . ( γ ˉ ⋅ ε ˉ ( p ) ) . ( γ ˉ ⋅ ( − k 2 − k 3 ) + m q ) . ( γ ˉ ⋅ ε ˉ ∗ ( k 3 ) ) . ( φ ( − k 2 , m q ) )
Fix the kinematics
FCClearScalarProducts[] ;
SP[ k1] = SMP[ "m_q" ] ^ 2 ;
SP[ k2] = SMP[ "m_q" ] ^ 2 ;
SP[ k3] = 0 ;
SP[ k1, k2] = QQ/ 2 (1 - x3);
SP[ k1, k3] = QQ/ 2 (1 - x2);
SP[ k2, k3] = QQ/ 2 (1 - x1);
Square the amplitude
ampSquared[ 0 ] = (amp[ 0 ] (ComplexConjugate[ amp[ 0 ]] )) // SUNSimplify //
DoPolarizationSums[ #, p , 0 ,
VirtualBoson -> True ] & // DoPolarizationSums[ #, k3, 0 ,
VirtualBoson -> True ] & // FermionSpinSum //
DiracSimplify // FeynAmpDenominatorExplicit // Simplify
1 QQ 2 ( x1 − 1 ) 2 ( x2 − 1 ) 2 8 e 2 C A C F e Q 2 g s 2 ( 2 QQ m q 2 ( x1 3 + x1 2 ( x2 + x3 − 5 ) + x1 ( x2 2 − 4 x2 x3 + 2 x3 + 4 ) + x2 3 + x2 2 ( x3 − 5 ) + 2 x2 ( x3 + 2 ) − 2 ( x3 + 1 ) ) − 8 m q 4 ( x1 2 − 2 x1 + x2 2 − 2 x2 + 2 ) + QQ 2 ( x1 − 1 ) ( x2 − 1 ) ( x1 2 + 2 x1 ( x3 − 2 ) + x2 2 + 2 x2 ( x3 − 2 ) + 2 ( x3 − 2 ) 2 ) ) \frac{1}{\text{QQ}^2 (\text{x1}-1)^2
(\text{x2}-1)^2}8 \;\text{e}^2 C_A C_F e_Q^2 g_s^2 \left(2 \;\text{QQ}
m_q^2 \left(\text{x1}^3+\text{x1}^2 (\text{x2}+\text{x3}-5)+\text{x1}
\left(\text{x2}^2-4 \;\text{x2} \;\text{x3}+2
\;\text{x3}+4\right)+\text{x2}^3+\text{x2}^2 (\text{x3}-5)+2 \;\text{x2}
(\text{x3}+2)-2 (\text{x3}+1)\right)-8 m_q^4 \left(\text{x1}^2-2
\;\text{x1}+\text{x2}^2-2 \;\text{x2}+2\right)+\text{QQ}^2 (\text{x1}-1)
(\text{x2}-1) \left(\text{x1}^2+2 \;\text{x1}
(\text{x3}-2)+\text{x2}^2+2 \;\text{x2} (\text{x3}-2)+2
(\text{x3}-2)^2\right)\right) QQ 2 ( x1 − 1 ) 2 ( x2 − 1 ) 2 1 8 e 2 C A C F e Q 2 g s 2 ( 2 QQ m q 2 ( x1 3 + x1 2 ( x2 + x3 − 5 ) + x1 ( x2 2 − 4 x2 x3 + 2 x3 + 4 ) + x2 3 + x2 2 ( x3 − 5 ) + 2 x2 ( x3 + 2 ) − 2 ( x3 + 1 ) ) − 8 m q 4 ( x1 2 − 2 x1 + x2 2 − 2 x2 + 2 ) + QQ 2 ( x1 − 1 ) ( x2 − 1 ) ( x1 2 + 2 x1 ( x3 − 2 ) + x2 2 + 2 x2 ( x3 − 2 ) + 2 ( x3 − 2 ) 2 ) )
ampSquaredMassless[ 0 ] = ampSquared[ 0 ] // ReplaceAll [ #, { SMP[ "m_q" ] -> 0 ,
x3 -> 2 - x1 - x2, SMP[ "e" ] ^ 2 -> (4 Pi SMP[ "alpha_fs" ] ), SMP[ "g_s" ] ^ 2 -> (4 Pi SMP[ "alpha_s" ] )}] & //
Simplify // SUNSimplify[ #, SUNNToCACF -> False ] &
64 π 2 α ( N 2 − 1 ) e Q 2 α s ( x1 2 + x2 2 ) ( x1 − 1 ) ( x2 − 1 ) \frac{64 \pi ^2 \alpha \left(N^2-1\right)
e_Q^2 \alpha _s \left(\text{x1}^2+\text{x2}^2\right)}{(\text{x1}-1)
(\text{x2}-1)} ( x1 − 1 ) ( x2 − 1 ) 64 π 2 α ( N 2 − 1 ) e Q 2 α s ( x1 2 + x2 2 )
ampSquaredMasslessSUNN3[ 0 ] = ampSquaredMassless[ 0 ] /. SUNN -> 3
512 π 2 α e Q 2 α s ( x1 2 + x2 2 ) ( x1 − 1 ) ( x2 − 1 ) \frac{512 \pi ^2 \alpha e_Q^2 \alpha _s
\left(\text{x1}^2+\text{x2}^2\right)}{(\text{x1}-1)
(\text{x2}-1)} ( x1 − 1 ) ( x2 − 1 ) 512 π 2 α e Q 2 α s ( x1 2 + x2 2 )
Total decay rate
pref = QQ/ (128 Pi ^ 3 ) 1 / (2 Sqrt [ QQ] )
QQ 256 π 3 \frac{\sqrt{\text{QQ}}}{256 \pi
^3} 256 π 3 QQ
normBorn = 3 SMP[ "alpha_fs" ] SMP[ "e_Q" ] ^ 2 Sqrt [ QQ]
3 α QQ e Q 2 3 \alpha \sqrt{\text{QQ}}
e_Q^2 3 α QQ e Q 2
Differential cross-section normalized w.r.t to the Born cross-section
1/sigma_0 d sigma / (d x1 d x2)
normDiffCrossSection = ampSquaredMasslessSUNN3[ 0 ] pref/ normBorn
2 α s ( x1 2 + x2 2 ) 3 π ( x1 − 1 ) ( x2 − 1 ) \frac{2 \alpha _s
\left(\text{x1}^2+\text{x2}^2\right)}{3 \pi (\text{x1}-1)
(\text{x2}-1)} 3 π ( x1 − 1 ) ( x2 − 1 ) 2 α s ( x1 2 + x2 2 )
This integral is divergent for x1->1 and x2->1. The source of
these divergences are infrared (when the gluon energy approaches 0) and
collinear (when the gluon and quark become collinear) singularities.
If [ $FrontEnd = != Null ,
Plot3D [ (normDiffCrossSection /. SMP[ "alpha_s" ] -> 1 ), { x1, 0 , 1 }, { x2, 0 , 1 }]
]
Introducing a regulator beta=m2/Q 2 to enforce that the
Mandelstam variables s and t are always larger than m^2 gives
2 α s ( x1 2 + x2 2 ) 3 π ( x1 − 1 ) ( x2 − 1 ) \frac{2 \alpha _s
\left(\text{x1}^2+\text{x2}^2\right)}{3 \pi (\text{x1}-1)
(\text{x2}-1)} 3 π ( x1 − 1 ) ( x2 − 1 ) 2 α s ( x1 2 + x2 2 )
tmpIntegral = Integrate [ normDiffCrossSection, { x2, 1 - x1, 1 - beta },
Assumptions -> { beta < x1, beta > 0 , x1 >= 0 , x1 <= 1 }]
α s ( 2 x1 2 log ( beta x1 ) + ( beta − x1 ) ( beta + x1 − 4 ) + 2 log ( beta ) − 2 log ( x1 ) ) 3 π ( x1 − 1 ) \frac{\alpha _s \left(2 \;\text{x1}^2 \log
\left(\frac{\text{beta}}{\text{x1}}\right)+(\text{beta}-\text{x1})
(\text{beta}+\text{x1}-4)+2 \log (\text{beta})-2 \log
(\text{x1})\right)}{3 \pi (\text{x1}-1)} 3 π ( x1 − 1 ) α s ( 2 x1 2 log ( x1 beta ) + ( beta − x1 ) ( beta + x1 − 4 ) + 2 log ( beta ) − 2 log ( x1 ) )
(*integralReg=Integrate[tmpIntegral,{x1,beta,1-beta},Assumptions->{beta>0}]*)
integralReg = ConditionalExpression [
((5 - 10 * beta - 4 * (3 + (- 4 + beta )* beta + (2 * I )* Pi )* ArcTanh [ 1 - 2 * beta ] +
2 * Log [ 1 - beta ] * Log [ (1 - beta )/ beta ^ 2 ] + 2 * Log [ beta ] ^ 2 +
4 * PolyLog [ 2 , (1 - beta )^ (- 1 )] - 4 * PolyLog [ 2 , beta ^ (- 1 )] )*
SMP[ "alpha_s" ] )/ (3 * Pi ), beta < 1 / 2 ]
α s ( 2 log ( 1 − beta ) log ( 1 − beta beta 2 ) + 4 Li 2 ( 1 1 − beta ) − 4 Li 2 ( 1 beta ) − 10 beta + 2 log 2 ( beta ) − 4 ( ( beta − 4 ) beta + 2 i π + 3 ) tanh − 1 ( 1 − 2 beta ) + 5 ) 3 π if beta < 1 2 \fbox{$\frac{\alpha _s \left(2 \log
(1-\text{beta}) \log \left(\frac{1-\text{beta}}{\text{beta}^2}\right)+4
\;\text{Li}_2\left(\frac{1}{1-\text{beta}}\right)-4
\;\text{Li}_2\left(\frac{1}{\text{beta}}\right)-10 \;\text{beta}+2 \log
^2(\text{beta})-4 ((\text{beta}-4) \;\text{beta}+2 i \pi +3) \tanh
^{-1}(1-2 \;\text{beta})+5\right)}{3 \pi }\;\text{ if
}\;\text{beta}<\frac{1}{2}$} 3 π α s ( 2 l o g ( 1 − beta ) l o g ( beta 2 1 − beta ) + 4 Li 2 ( 1 − beta 1 ) − 4 Li 2 ( beta 1 ) − 10 beta + 2 l o g 2 ( beta ) − 4 (( beta − 4 ) beta + 2 iπ + 3 ) t a n h − 1 ( 1 − 2 beta ) + 5 ) if beta < 2 1
Expanding around beta=0 we obtain
integralRegExpanded = Series [ Simplify [ Normal [ integralReg]], { beta , 0 , 0 },
Assumptions -> beta > 0 ] // Normal
− ( − 12 log 2 ( beta ) − 18 log ( beta ) + 2 π 2 − 15 ) α s 9 π -\frac{\left(-12 \log ^2(\text{beta})-18
\log (\text{beta})+2 \pi ^2-15\right) \alpha _s}{9 \pi } − 9 π ( − 12 log 2 ( beta ) − 18 log ( beta ) + 2 π 2 − 15 ) α s
Factoring out the Born cross-section we arrive to
integralRegExpandedFinal = Collect2[ integralRegExpanded, Log , Pi , FCFactorOut -> 2 / (3 Pi ) SMP[ "alpha_s" ]]
2 ( 2 log 2 ( beta ) + 3 log ( beta ) − π 2 3 + 5 2 ) α s 3 π \frac{2 \left(2 \log ^2(\text{beta})+3
\log (\text{beta})-\frac{\pi ^2}{3}+\frac{5}{2}\right) \alpha _s}{3 \pi
} 3 π 2 ( 2 log 2 ( beta ) + 3 log ( beta ) − 3 π 2 + 2 5 ) α s
To get rid of the singularities we must also include the virtual
contributions to the cross-section!
Check the final results
knownResults = {
(2 * (x1^ 2 + x2^ 2 )* SMP[ "alpha_s" ] )/ (3 * Pi * (- 1 + x1)* (- 1 + x2))
} ;
FCCompareResults[{ normDiffCrossSection}, knownResults,
Text -> { " \t Compare to Field, Applications of Perturbative QCD, Eq. 2.3.32" ,
"CORRECT." , "WRONG!" }, Interrupt -> { Hold [ Quit [ 1 ]], Automatic }] ;
Print [ " \t CPU Time used: " , Round [ N [ TimeUsed [], 4 ], 0.001 ], " s." ] ;
\ tCompare to Field, Applications of Perturbative QCD, Eq. 2.3.32 CORRECT. \text{$\backslash $tCompare to Field,
Applications of Perturbative QCD, Eq. 2.3.32}
\;\text{CORRECT.} \tCompare to Field, Applications of Perturbative QCD, Eq. 2.3.32 CORRECT.
\ tCPU Time used: 28.225 s. \text{$\backslash $tCPU Time used:
}28.225\text{ s.} \tCPU Time used: 28.225 s.