Load
FeynCalc and the necessary add-ons or other packages
description = "Ga^* -> Q Qbar, QCD, SCET soft function, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[10, 0, 0];
FeynCalc 10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the onlinedocumentation, visit the forum and have a look at the supplied examples. The PDF-version of the manual can be downloaded here.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
FCAttachTypesettingRule[k1, {SubscriptBox, k, 1}]
FCAttachTypesettingRule[k2, {SubscriptBox, k, 2}]
diagQQ = InsertFields[CreateTopologies[0, 1 -> 2], {V[1]} ->
{F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
Paint[diagQQ, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

diagsQQG = InsertFields[CreateTopologies[0, 1 -> 3], {V[1]} ->
{F[3, {1}], -F[3, {1}], V[5]}, InsertionLevel -> {Classes},
Model -> "SMQCD"];
Paint[diagsQQG, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitudes
ampQQ[0] = FCFAConvert[CreateFeynAmp[diagQQ], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> D,
List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> 0}]
eeQδCol2Col3(φ(k1)).(γ⋅ε(p)).(φ(−k2))
ampQQG[0] = FCFAConvert[CreateFeynAmp[diagsQQG], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2, k}, UndoChiralSplittings -> True, ChangeDimension -> D,
List -> True, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> 0}]
{(k+k2)2eeQgsTCol2Col3Glu4(φ(k1)).(γ⋅ε(p)).(γ⋅(−k−k2)).(γ⋅ε∗(k)).(φ(−k2)),(−k−k1)2eeQgsTCol2Col3Glu4(φ(k1)).(γ⋅ε∗(k)).(γ⋅(k+k1)).(γ⋅ε(p)).(φ(−k2))}
Fix the kinematics
quark k1 is collinear so that k1 = n^mu (k1.nb) with k1 ~ (la^2,1,la)
antiquark k2 is anticollinear so that k2 = nb^mu (k2.n) with k2 ~
(1,la^2,la) gluon k is ultrasoft with k ~ (la^2, la^2, la^2)
$FCDefaultLightconeVectorN = n;
$FCDefaultLightconeVectorNB = nb;
FCClearScalarProducts[]
ScalarProduct[nb] = 0;
ScalarProduct[n, nb] = 2;
ScalarProduct[n] = 0;
ScalarProduct[k] = 0;
ScalarProduct[k1, n] = 0;
ScalarProduct[k2, nb] = 0;
LightConePerpendicularComponent[Momentum[k1], Momentum[n], Momentum[nb]] = 0;
LightConePerpendicularComponent[Momentum[k2], Momentum[n], Momentum[nb]] = 0;
LightConePerpendicularComponent[Momentum[k1, D], Momentum[n, D], Momentum[nb, D]] = 0;
LightConePerpendicularComponent[Momentum[k2, D], Momentum[n, D], Momentum[nb, D]] = 0;
DataType[Q, FCVariable] = True;
DataType[la, FCVariable] = True;
Auxiliary code
This code handles the decomposition of spinors containing only
collinear and anticollinear components
ClearAll[spinorDecomposeD];
spinorDecomposeD[ex_, cMoms_List, acMoms_List, n_, nb_] :=
Block[{expr, holdDOT, res, Pmin, Pplus, hold},
Pmin = GSD[nb, n]/4;
Pplus = GSD[n, nb]/4;
expr = ex /. DOT -> holdDOT;
expr = expr //. {
(*ubar_xi_c n_slash = 0*)
(*vbar_xi_c n_slash = 0*)
holdDOT[Spinor[c_. Momentum[mom_, D], r___], rest___] /; MemberQ[cMoms, mom] :>
holdDOT[hold[Spinor][c Momentum[mom, D], r], Pmin, rest],
(*n_slash u_xi_c = 0*)
(*n_slash v_xi_c = 0*)
holdDOT[rest___, Spinor[c_. Momentum[mom_, D], r___]] /; MemberQ[cMoms, mom] :>
holdDOT[rest, Pplus, hold[Spinor][c Momentum[mom, D], r]],
(*ubar_xi_cbar nbar_slash = 0*)
(*vbar_xi_cbar nbar_slash = 0*)
holdDOT[Spinor[c_. Momentum[mom_, D], r___], rest___] /; MemberQ[acMoms, mom] :>
holdDOT[hold[Spinor][c Momentum[mom, D], r], Pplus, rest],
(*nbar_slash u_xi_cbar = 0*)
(*nbar_slash v_xi_cbar = 0*)
holdDOT[rest___, Spinor[c_. Momentum[mom_, D], r___]] /; MemberQ[acMoms, mom] :>
holdDOT[rest, Pmin, hold[Spinor][c Momentum[mom, D], r]]
};
res = expr /. holdDOT -> DOT /. hold -> Identity;
res
];
Expand and square the
amplitudes
Born amplitude rewritten in terms of large components of the
collinear fields
ampQQ[1] = ampQQ[0] // ToLightConeComponents // spinorDecomposeD[#, {k1}, {k2}, n, nb] & //
DiracSimplify
eeQδCol2Col3(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))−41eeQδCol2Col3(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2))
ampQQSq[1] = SUNSimplify[ampQQ[1] ComplexConjugate[ampQQ[1]]] // Simplify
161e2CAeQ2(4(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))−(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2)))(4(φ(−k2)).(γ⋅ε∗(p)⊥).(φ(k1))−(φ(−k2)).(γ⋅ε∗(p)⊥).(γ⋅nb).(γ⋅n).(φ(k1)))
Introduce the lightcone components, simplify Dirac algebra, add
scaling of k for the expansion
ampQQG[1] = ampQQG[0] // FeynAmpDenominatorExplicit // ToLightConeComponents //
DiracSimplify // FCReplaceMomenta[#, {k -> la^2 k}] &;
Expand up to leading power, reorder Dirac matrices
ampQQG[2] = Series[ampQQG[1], {la, 0, -2}] // Normal // DotSimplify //
DiracSimplify[#, DiracOrder -> {n, nb, Polarization}] & // ReplaceAll[#, la -> 1] &
{−2(k⋅nb)eeQgsTCol2Col3Glu4(nb⋅ε∗(k))(nb⋅ε(p))(φ(k1)).(γ⋅n).(φ(−k2))+4(k⋅nb)eeQgsTCol2Col3Glu4(nb⋅ε∗(k))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2))−4(k⋅nb)eeQgsTCol2Col3Glu4(nb⋅ε(p))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε∗(k)⊥).(φ(−k2))−k⋅nbeeQgsTCol2Col3Glu4(nb⋅ε∗(k))(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))+2(k⋅nb)eeQgsTCol2Col3Glu4(φ(k1)).(γ⋅nb).(γ⋅ε(p)⊥).(γ⋅ε∗(k)⊥).(φ(−k2)),2(k⋅n)eeQgsTCol2Col3Glu4(n⋅ε∗(k))(n⋅ε(p))(φ(k1)).(γ⋅nb).(φ(−k2))−4(k⋅n)eeQgsTCol2Col3Glu4(n⋅ε∗(k))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2))+4(k⋅n)eeQgsTCol2Col3Glu4(n⋅ε(p))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε∗(k)⊥).(φ(−k2))+k⋅neeQgsTCol2Col3Glu4(n⋅ε∗(k))(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))−2(k⋅n)eeQgsTCol2Col3Glu4(φ(k1)).(γ⋅n).(γ⋅ε∗(k)⊥).(γ⋅ε(p)⊥).(φ(−k2))}
Introduce large components of the collinear fields
ampQQG[3] = ampQQG[2] // spinorDecomposeD[#, {k1}, {k2}, n, nb] & // DiracSimplify
{4(k⋅nb)eeQgsTCol2Col3Glu4(nb⋅ε∗(k))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2))−k⋅nbeeQgsTCol2Col3Glu4(nb⋅ε∗(k))(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2)),k⋅neeQgsTCol2Col3Glu4(n⋅ε∗(k))(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))−4(k⋅n)eeQgsTCol2Col3Glu4(n⋅ε∗(k))(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2))}
Square the amplitudes, sum over the gluon polarizations
ampQQGSq[1] = Total[ampQQG[3]] ComplexConjugate[Total[ampQQG[3]]] // SUNSimplify //
DoPolarizationSums[#, k, aux] &
4(k⋅n)(k⋅nb)e2CACFeQ2gs2(4(φ(k1)).(γ⋅ε(p)⊥).(φ(−k2))−(φ(k1)).(γ⋅n).(γ⋅nb).(γ⋅ε(p)⊥).(φ(−k2)))(4(φ(−k2)).(γ⋅ε∗(p)⊥).(φ(k1))−(φ(−k2)).(γ⋅ε∗(p)⊥).(γ⋅nb).(γ⋅n).(φ(k1)))
Final LO soft function
Divide out the born amplitude squared
aux = (ampQQGSq[1]/ampQQSq[1]) /. SMP["g_s"] -> Sqrt[4 Pi SMP["alpha_s"]]
(k⋅n)(k⋅nb)16πCFαs
Account for the extra prefactor
2π(k⋅n)(k⋅nb)CFαs
Check the final results
```mathematica knownResults = {
(CFSMP[“alpha_s”])/(2PiPair[Momentum[k, D], Momentum[n,
D]]Pair[Momentum[k, D], Momentum[nb, D]]) };
FCCompareResults[{res}, knownResults, Text -> {“to Automation, of
Calculations in Soft-Collinear Effective Theory by R. Rahn, Eq. 5.3”,
“CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];
```mathematica
\tCompare to Automation, of Calculations in Soft-Collinear Effective Theory by R. Rahn, Eq. 5.3CORRECT.
\tCPU Time used: 15.792 s.