description = "Ga^* -> Q Qbar, QCD, SCET soft function, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[10, 0, 0];\text{FeynCalc }\;\text{10.0.0 (dev version, 2024-08-07 16:59:34 +02:00, 2f62a22c). For help, use the }\underline{\text{online} \;\text{documentation},}\;\text{ visit the }\underline{\text{forum}}\;\text{ and have a look at the supplied }\underline{\text{examples}.}\;\text{ The PDF-version of the manual can be downloaded }\underline{\text{here}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
FCAttachTypesettingRule[k1, {SubscriptBox, k, 1}]
FCAttachTypesettingRule[k2, {SubscriptBox, k, 2}]diagQQ = InsertFields[CreateTopologies[0, 1 -> 2], {V[1]} ->
{F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
Paint[diagQQ, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];diagsQQG = InsertFields[CreateTopologies[0, 1 -> 3], {V[1]} ->
{F[3, {1}], -F[3, {1}], V[5]}, InsertionLevel -> {Classes},
Model -> "SMQCD"];
Paint[diagsQQG, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];ampQQ[0] = FCFAConvert[CreateFeynAmp[diagQQ], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> D,
List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> 0}]\text{e} e_Q \delta _{\text{Col2}\;\text{Col3}} \left(\varphi (k_1)\right).(\gamma \cdot \varepsilon (p)).\left(\varphi (-k_2)\right)
ampQQG[0] = FCFAConvert[CreateFeynAmp[diagsQQG], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2, k}, UndoChiralSplittings -> True, ChangeDimension -> D,
List -> True, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> 0}]\left\{\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi (k_1)\right).(\gamma \cdot \varepsilon (p)).\left(\gamma \cdot \left(-k-k_2\right)\right).\left(\gamma \cdot \varepsilon ^*(k)\right).\left(\varphi (-k_2)\right)}{(k+k_2){}^2},\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon ^*(k)\right).\left(\gamma \cdot \left(k+k_1\right)\right).(\gamma \cdot \varepsilon (p)).\left(\varphi (-k_2)\right)}{(-k-k_1){}^2}\right\}
quark k1 is collinear so that k1 = n^mu (k1.nb) with k1 ~ (la^2,1,la) antiquark k2 is anticollinear so that k2 = nb^mu (k2.n) with k2 ~ (1,la^2,la) gluon k is ultrasoft with k ~ (la^2, la^2, la^2)
$FCDefaultLightconeVectorN = n;
$FCDefaultLightconeVectorNB = nb;
FCClearScalarProducts[]
ScalarProduct[nb] = 0;
ScalarProduct[n, nb] = 2;
ScalarProduct[n] = 0;
ScalarProduct[k] = 0;
ScalarProduct[k1, n] = 0;
ScalarProduct[k2, nb] = 0;LightConePerpendicularComponent[Momentum[k1], Momentum[n], Momentum[nb]] = 0;
LightConePerpendicularComponent[Momentum[k2], Momentum[n], Momentum[nb]] = 0;
LightConePerpendicularComponent[Momentum[k1, D], Momentum[n, D], Momentum[nb, D]] = 0;
LightConePerpendicularComponent[Momentum[k2, D], Momentum[n, D], Momentum[nb, D]] = 0;DataType[Q, FCVariable] = True;
DataType[la, FCVariable] = True;This code handles the decomposition of spinors containing only collinear and anticollinear components
ClearAll[spinorDecomposeD];
spinorDecomposeD[ex_, cMoms_List, acMoms_List, n_, nb_] :=
Block[{expr, holdDOT, res, Pmin, Pplus, hold},
Pmin = GSD[nb, n]/4;
Pplus = GSD[n, nb]/4;
expr = ex /. DOT -> holdDOT;
expr = expr //. {
(*ubar_xi_c n_slash = 0*)
(*vbar_xi_c n_slash = 0*)
holdDOT[Spinor[c_. Momentum[mom_, D], r___], rest___] /; MemberQ[cMoms, mom] :>
holdDOT[hold[Spinor][c Momentum[mom, D], r], Pmin, rest],
(*n_slash u_xi_c = 0*)
(*n_slash v_xi_c = 0*)
holdDOT[rest___, Spinor[c_. Momentum[mom_, D], r___]] /; MemberQ[cMoms, mom] :>
holdDOT[rest, Pplus, hold[Spinor][c Momentum[mom, D], r]],
(*ubar_xi_cbar nbar_slash = 0*)
(*vbar_xi_cbar nbar_slash = 0*)
holdDOT[Spinor[c_. Momentum[mom_, D], r___], rest___] /; MemberQ[acMoms, mom] :>
holdDOT[hold[Spinor][c Momentum[mom, D], r], Pplus, rest],
(*nbar_slash u_xi_cbar = 0*)
(*nbar_slash v_xi_cbar = 0*)
holdDOT[rest___, Spinor[c_. Momentum[mom_, D], r___]] /; MemberQ[acMoms, mom] :>
holdDOT[rest, Pmin, hold[Spinor][c Momentum[mom, D], r]]
};
res = expr /. holdDOT -> DOT /. hold -> Identity;
res
];Born amplitude rewritten in terms of large components of the collinear fields
ampQQ[1] = ampQQ[0] // ToLightConeComponents // spinorDecomposeD[#, {k1}, {k2}, n, nb] & //
DiracSimplify\text{e} e_Q \delta _{\text{Col2}\;\text{Col3}} \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)-\frac{1}{4} \;\text{e} e_Q \delta _{\text{Col2}\;\text{Col3}} \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)
ampQQSq[1] = SUNSimplify[ampQQ[1] ComplexConjugate[ampQQ[1]]] // Simplify\frac{1}{16} \;\text{e}^2 C_A e_Q^2 \left(4 \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)-\left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)\right) \left(4 \left(\varphi (-k_2)\right).\left(\gamma \cdot \varepsilon ^*(p){}_{\perp }\right).\left(\varphi (k_1)\right)-\left(\varphi (-k_2)\right).\left(\gamma \cdot \varepsilon ^*(p){}_{\perp }\right).(\gamma \cdot \;\text{nb}).(\gamma \cdot n).\left(\varphi (k_1)\right)\right)
Introduce the lightcone components, simplify Dirac algebra, add scaling of k for the expansion
ampQQG[1] = ampQQG[0] // FeynAmpDenominatorExplicit // ToLightConeComponents //
DiracSimplify // FCReplaceMomenta[#, {k -> la^2 k}] &;Expand up to leading power, reorder Dirac matrices
ampQQG[2] = Series[ampQQG[1], {la, 0, -2}] // Normal // DotSimplify //
DiracSimplify[#, DiracOrder -> {n, nb, Polarization}] & // ReplaceAll[#, la -> 1] &\left\{-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\text{nb}\cdot \varepsilon ^*(k)\right) (\text{nb}\cdot \varepsilon (p)) \left(\varphi (k_1)\right).(\gamma \cdot n).\left(\varphi (-k_2)\right)}{2 (k\cdot \;\text{nb})}+\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\text{nb}\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot \;\text{nb})}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} (\text{nb}\cdot \varepsilon (p)) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon ^*(k){}_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot \;\text{nb})}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\text{nb}\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{k\cdot \;\text{nb}}+\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi (k_1)\right).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\gamma \cdot \varepsilon ^*(k){}_{\perp }\right).\left(\varphi (-k_2)\right)}{2 (k\cdot \;\text{nb})},\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(n\cdot \varepsilon ^*(k)\right) (n\cdot \varepsilon (p)) \left(\varphi (k_1)\right).(\gamma \cdot \;\text{nb}).\left(\varphi (-k_2)\right)}{2 (k\cdot n)}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(n\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot n)}+\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} (n\cdot \varepsilon (p)) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon ^*(k){}_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot n)}+\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(n\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{k\cdot n}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\varphi (k_1)\right).(\gamma \cdot n).\left(\gamma \cdot \varepsilon ^*(k){}_{\perp }\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{2 (k\cdot n)}\right\}
Introduce large components of the collinear fields
ampQQG[3] = ampQQG[2] // spinorDecomposeD[#, {k1}, {k2}, n, nb] & // DiracSimplify\left\{\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\text{nb}\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot \;\text{nb})}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(\text{nb}\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{k\cdot \;\text{nb}},\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(n\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{k\cdot n}-\frac{\text{e} e_Q g_s T_{\text{Col2}\;\text{Col3}}^{\text{Glu4}} \left(n\cdot \varepsilon ^*(k)\right) \left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)}{4 (k\cdot n)}\right\}
Square the amplitudes, sum over the gluon polarizations
ampQQGSq[1] = Total[ampQQG[3]] ComplexConjugate[Total[ampQQG[3]]] // SUNSimplify //
DoPolarizationSums[#, k, aux] &\frac{\text{e}^2 C_A C_F e_Q^2 g_s^2 \left(4 \left(\varphi (k_1)\right).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)-\left(\varphi (k_1)\right).(\gamma \cdot n).(\gamma \cdot \;\text{nb}).\left(\gamma \cdot \varepsilon (p)_{\perp }\right).\left(\varphi (-k_2)\right)\right) \left(4 \left(\varphi (-k_2)\right).\left(\gamma \cdot \varepsilon ^*(p){}_{\perp }\right).\left(\varphi (k_1)\right)-\left(\varphi (-k_2)\right).\left(\gamma \cdot \varepsilon ^*(p){}_{\perp }\right).(\gamma \cdot \;\text{nb}).(\gamma \cdot n).\left(\varphi (k_1)\right)\right)}{4 (k\cdot n) (k\cdot \;\text{nb})}
Divide out the born amplitude squared
aux = (ampQQGSq[1]/ampQQSq[1]) /. SMP["g_s"] -> Sqrt[4 Pi SMP["alpha_s"]]\frac{16 \pi C_F \alpha _s}{(k\cdot n) (k\cdot \;\text{nb})}
Account for the extra prefactor
pref = 1/(32 Pi^2);res = aux pref\frac{C_F \alpha _s}{2 \pi (k\cdot n) (k\cdot \;\text{nb})}
```mathematica knownResults = { (CFSMP[“alpha_s”])/(2PiPair[Momentum[k, D], Momentum[n, D]]Pair[Momentum[k, D], Momentum[nb, D]]) }; FCCompareResults[{res}, knownResults, Text -> {“to Automation, of Calculations in Soft-Collinear Effective Theory by R. Rahn, Eq. 5.3”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];
```mathematica
\text{$\backslash $tCompare to Automation, of Calculations in Soft-Collinear Effective Theory by R. Rahn, Eq. 5.3} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }15.792\text{ s.}