description = "Ga^* -> Q Qbar, QCD, total decay rate, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";diags = InsertFields[CreateTopologies[0, 1 -> 2], {V[1]} ->
{F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD"];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}]\text{e} e_Q \delta _{\text{Col2}\;\text{Col3}} \left(\varphi (\overline{k_1},m_q)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\left(\varphi (-\overline{k_2},m_q)\right)
FCClearScalarProducts[];
SP[k1] = SMP["m_q"]^2;
SP[k2] = SMP["m_q"]^2;
SP[k1, k2] = (QQ - SP[k1] - SP[k2])/2;ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // SUNSimplify[#, Explicit -> True,
SUNNToCACF -> False] & // FermionSpinSum // DoPolarizationSums[#, p, 0,
VirtualBoson -> True] & // DiracSimplify8 \;\text{e}^2 N e_Q^2 m_q^2+4 \;\text{e}^2 N \;\text{QQ} e_Q^2
ampSquaredMassless[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_q"] -> 0}] &4 \;\text{e}^2 N \;\text{QQ} e_Q^2
ampSquaredMasslessSUNN3[0] = ampSquaredMassless[0] /. SUNN -> 312 \;\text{e}^2 \;\text{QQ} e_Q^2
The differential decay rate d Gamma/ d Omega is given by
prefac = ExpandScalarProduct[1/(64 Pi^2) 1/Sqrt[(SP[k1 + k2])]]\frac{1}{64 \pi ^2 \sqrt{\text{QQ}}}
diffDecayRate = prefac ampSquaredMasslessSUNN3[0] /.
SMP["e"]^2 -> (4 Pi SMP["alpha_fs"])\frac{3 \alpha \sqrt{\text{QQ}} e_Q^2}{4 \pi }
The total decay-rate
decayRateTotal = 4 Pi diffDecayRate3 \alpha \sqrt{\text{QQ}} e_Q^2
Notice that up to the overall color factor 3 and the quark electric charge squared this result is identical to the total decay rate of a virtual photon into a muon-antimuon pair
decayRateTotalQED = SMP["alpha_fs"] Sqrt[QQ]\alpha \sqrt{\text{QQ}}
Taking the ration of the two gives us the famous R-ration prediction of the parton mode, where the summation over the quark flavors in front of the charge squared is understood
decayRateTotal/decayRateTotalQED3 e_Q^2
knownResults = {
3 SMP["alpha_fs"] SMP["e_Q"]^2 Sqrt[QQ]
};
FCCompareResults[{decayRateTotal}, knownResults,
Text -> {"\tCompare to Field, Applications of Perturbative QCD, Eq. 2.1.30",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];\text{$\backslash $tCompare to Field, Applications of Perturbative QCD, Eq. 2.1.30} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }15.915\text{ s.}