= "El Ael -> Q Qbar, QCD, total cross section, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], -F[2, {1}]} ->
diags {F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD",
-> {S[_], V[2]}];
ExcludeParticles
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
amp-> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
OutgoingMomenta List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
-> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}] Prefactor
\frac{\text{e}^2 e_Q \delta _{\text{Col3}\;\text{Col4}} \left(\varphi (-\overline{p_2},m_e)\right).\bar{\gamma }^{\text{Lor1}}.\left(\varphi (\overline{p_1},m_e)\right) \left(\varphi (\overline{k_1},m_q)\right).\bar{\gamma }^{\text{Lor1}}.\left(\varphi (-\overline{k_2},m_q)\right)}{(\overline{k_1}+\overline{k_2}){}^2}
[];
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2, SMP["m_e"], SMP["m_e"],
SetMandelstam["m_q"], SMP["m_q"]]; SMP
[0] = (amp[0] (ComplexConjugate[amp[0]])) //
ampSquared// SUNSimplify[#, Explicit -> True,
FeynAmpDenominatorExplicit -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
SUNNToCACF //
DiracSimplify [#, {s, t, u, 2 SMP["m_q"]^2 + 2 SMP["m_e"]^2}] & //Simplify TrickMandelstam
\frac{2 \;\text{e}^4 N e_Q^2 \left(-4 m_e^2 \left(u-m_q^2\right)+2 m_e^4-4 u m_q^2+2 m_q^4+s^2+2 s u+2 u^2\right)}{s^2}
[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_q" | "m_e"] -> 0}] & //
ampSquaredMassless[#, {s, t, u, 0}] & TrickMandelstam
\frac{2 \;\text{e}^4 N e_Q^2 \left(t^2+u^2\right)}{s^2}
[0] = ampSquaredMassless[0] /. SUNN -> 3 ampSquaredMasslessSUNN3
\frac{6 \;\text{e}^4 e_Q^2 \left(t^2+u^2\right)}{s^2}
The differential cross-section d sigma/ d Omega is given by
= 1/(64 Pi^2 s); prefac1
= (Factor[ampSquaredMasslessSUNN3[0] /. {t -> -s/2 (1 - Cos[Th]), u -> -s/2 (1 + Cos[Th]),
integral1 ["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}]) SMP
48 \pi ^2 \alpha ^2 e_Q^2 \left(\cos ^2(\text{Th})+1\right)
= prefac1 integral1 diffXSection1
\frac{3 \alpha ^2 e_Q^2 \left(\cos ^2(\text{Th})+1\right)}{4 s}
The differential cross-section d sigma/ d t d phi is given by
= 1/(128 Pi^2 s) prefac2
\frac{1}{128 \pi ^2 s}
= Simplify[ampSquaredMasslessSUNN3[0]/(s/4) /. {u -> -s - t,
integral2 ["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}] SMP
\frac{384 \pi ^2 \alpha ^2 e_Q^2 \left(s^2+2 s t+2 t^2\right)}{s^3}
= prefac2 integral2 diffXSection2
\frac{3 \alpha ^2 e_Q^2 \left(s^2+2 s t+2 t^2\right)}{s^4}
The total cross-section. We see that integrating both expressions gives the same result
2 Pi Integrate[diffXSection1 Sin[Th], {Th, 0, Pi}]
\frac{4 \pi \alpha ^2 e_Q^2}{s}
= 2 Pi Integrate[diffXSection2, {t, -s, 0}] crossSectionTotal
\frac{4 \pi \alpha ^2 e_Q^2}{s}
Notice that up to the overall factor color factor 3 and the quark electric charge squared this result is identical to the total cross-section for the muon production in electron-positron annihilation.
= 4*Pi*SMP["alpha_fs"]^2/3/s crossSectionTotalQED
\frac{4 \pi \alpha ^2}{3 s}
Taking the ratio of the two gives us the famous R-ration prediction of the parton mode, where the summation over the quark flavors in front of the charge squared is understood
/crossSectionTotalQED crossSectionTotal
3 e_Q^2
= { eq[u | c | t] -> 2/3, eq[d | s | b] -> -1/3}; quarkCharges
Depending on the available center of mass energy, we may not be able to produce all the existing quark flavors. Below 3 GeV (roughly twice the mass of the charm quark) we have only up, down and strange quarks and the R-ratio is given by
Sum[3 eq[i]^2, {i, {u, d, s}}] /. quarkCharges
2
At higher energies but below 9 GeV (roughly twice the mass of the bottom quark) we also have the contribution from the charm quark
Sum[3 eq[i]^2, {i, {u, d, s, c}}] /. quarkCharges
\frac{10}{3}
At even higher energies the bottom quark must also be taken into account
Sum[3 eq[i]^2, {i, {u, d, s, c, b}}] /. quarkCharges
\frac{11}{3}
At some point we finally reach sufficiently high energies to produce the top quark
Sum[3 eq[i]^2, {i, {u, d, s, c, b, t}}] /. quarkCharges
5
= {
knownResults 6*(t^2 + u^2)*SMP["e"]^4*SMP["e_Q"]^2)/(s^2),
(4*Pi*SMP["alpha_fs"]^2*SMP["e_Q"]^2)/s
(};
[{ampSquaredMasslessSUNN3[0], crossSectionTotal},
FCCompareResults,
knownResultsText -> {"\tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15:} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }32.349\text{ s.}