Load
FeynCalc and the necessary add-ons or other packages
description = "El Ael -> Q Qbar, QCD, total cross section, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], -F[2, {1}]} ->
{F[3, {1}], -F[3, {1}]}, InsertionLevel -> {Classes}, Model -> "SMQCD",
ExcludeParticles -> {S[_], V[2]}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4,
List -> False, SMP -> True, Contract -> True, DropSumOver -> True,
Prefactor -> 3/2 SMP["e_Q"], FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}]
(k1+k2)2e2eQδCol3Col4(φ(−p2,me)).γˉLor1.(φ(p1,me))(φ(k1,mq)).γˉLor1.(φ(−k2,mq))
Fix the kinematics
FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2, SMP["m_e"], SMP["m_e"],
SMP["m_q"], SMP["m_q"]];
Square the amplitude
ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // SUNSimplify[#, Explicit -> True,
SUNNToCACF -> False] & // FermionSpinSum[#, ExtraFactor -> 1/2^2] & //
DiracSimplify //
TrickMandelstam[#, {s, t, u, 2 SMP["m_q"]^2 + 2 SMP["m_e"]^2}] & //Simplify
s22e4NeQ2(−4me2(u−mq2)+2me4−4umq2+2mq4+s2+2su+2u2)
ampSquaredMassless[0] = ampSquared[0] // ReplaceAll[#, {SMP["m_q" | "m_e"] -> 0}] & //
TrickMandelstam[#, {s, t, u, 0}] &
s22e4NeQ2(t2+u2)
ampSquaredMasslessSUNN3[0] = ampSquaredMassless[0] /. SUNN -> 3
s26e4eQ2(t2+u2)
Total cross-section
The differential cross-section d sigma/ d Omega is given by
integral1 = (Factor[ampSquaredMasslessSUNN3[0] /. {t -> -s/2 (1 - Cos[Th]), u -> -s/2 (1 + Cos[Th]),
SMP["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}])
48π2α2eQ2(cos2(Th)+1)
diffXSection1 = prefac1 integral1
4s3α2eQ2(cos2(Th)+1)
The differential cross-section d sigma/ d t d phi is given by
128π2s1
integral2 = Simplify[ampSquaredMasslessSUNN3[0]/(s/4) /. {u -> -s - t,
SMP["e"]^4 -> (4 Pi SMP["alpha_fs"])^2}]
s3384π2α2eQ2(s2+2st+2t2)
diffXSection2 = prefac2 integral2
s43α2eQ2(s2+2st+2t2)
The total cross-section. We see that integrating both expressions
gives the same result
2 Pi Integrate[diffXSection1 Sin[Th], {Th, 0, Pi}]
s4πα2eQ2
crossSectionTotal = 2 Pi Integrate[diffXSection2, {t, -s, 0}]
s4πα2eQ2
Notice that up to the overall factor color factor 3 and the quark
electric charge squared this result is identical to the total
cross-section for the muon production in electron-positron
annihilation.
crossSectionTotalQED = 4*Pi*SMP["alpha_fs"]^2/3/s
3s4πα2
Taking the ratio of the two gives us the famous R-ration prediction
of the parton mode, where the summation over the quark flavors in front
of the charge squared is understood
crossSectionTotal/crossSectionTotalQED
3eQ2
quarkCharges = { eq[u | c | t] -> 2/3, eq[d | s | b] -> -1/3};
Depending on the available center of mass energy, we may not be able
to produce all the existing quark flavors. Below 3 GeV (roughly twice
the mass of the charm quark) we have only up, down and strange quarks
and the R-ratio is given by
Sum[3 eq[i]^2, {i, {u, d, s}}] /. quarkCharges
2
At higher energies but below 9 GeV (roughly twice the mass of the
bottom quark) we also have the contribution from the charm quark
Sum[3 eq[i]^2, {i, {u, d, s, c}}] /. quarkCharges
310
At even higher energies the bottom quark must also be taken into
account
Sum[3 eq[i]^2, {i, {u, d, s, c, b}}] /. quarkCharges
311
At some point we finally reach sufficiently high energies to produce
the top quark
Sum[3 eq[i]^2, {i, {u, d, s, c, b, t}}] /. quarkCharges
5
Check the final results
knownResults = {
(6*(t^2 + u^2)*SMP["e"]^4*SMP["e_Q"]^2)/(s^2),
(4*Pi*SMP["alpha_fs"]^2*SMP["e_Q"]^2)/s
};
FCCompareResults[{ampSquaredMasslessSUNN3[0], crossSectionTotal},
knownResults,
Text -> {"\tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to CalcHEP and to Field, Applications of Perturbative QCD, Eq. 2.1.15:CORRECT.
True
\tCPU Time used: 32.349 s.