Load
FeynCalc and the necessary add-ons or other packages
description = "Q -> Q, QCD, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
We keep scaleless B0 functions, since otherwise the UV part would not
come out right.
$KeepLogDivergentScalelessIntegrals = True;
Generate Feynman diagrams
diags = InsertFields[CreateTopologies[1, 1 -> 1,
ExcludeTopologies -> Tadpoles], {F[3, {1}]} ->
{F[3, {1}]}, InsertionLevel -> {Particles}, Model -> "SMQCD",
ExcludeParticles -> {S[_], V[1 | 2 | 3]}];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit. We keep the full gauge
dependence.
amp[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True,
PreFactor -> 1, GaugeRules -> {}], IncomingMomenta -> {p},
OutgoingMomenta -> {p}, LoopMomenta -> {q}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True, DropSumOver -> True,
Contract -> True, FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}]
−(q2−mq2).(q−p)2gs2TCol3Col1Glu3TCol2Col3Glu3γLor2.(mq+γ⋅q).γLor2−(q2−mq2).(q−p)4(1−ξg)gs2TCol3Col1Glu3TCol2Col3Glu3(γ⋅(p−q)).(mq+γ⋅q).(γ⋅(q−p))
Calculate the amplitude
amp[1] = amp[0] // SUNSimplify // TID[#, q, ToPaVe -> True] &
2p21iπ2CFgs2δCol1Col2B0(p2,0,mq2)(−D(p2−mq2)γ⋅p−2Dp2mq+2Dp2γ⋅p+ξgmq2γ⋅p−2ξgmq(γ⋅p).(γ⋅p)+p2ξgγ⋅p+mq2(−(γ⋅p))+2mq(γ⋅p).(γ⋅p)+2(p2−mq2)γ⋅p−5p2γ⋅p)−2p2iπ2CF(1−ξg)gs2B0(0,0,0)δCol1Col2(mq2(−(γ⋅p))+2mq(γ⋅p).(γ⋅p)−2p2mq+p2γ⋅p)+2p2iπ2CF(1−ξg)gs2δCol1Col2(−mq2(p2−mq2)γ⋅p−4p2mq(γ⋅p).(γ⋅p)+2mq(p2−mq2)(γ⋅p).(γ⋅p)+p2(p2−mq2)γ⋅p+2p2mq3+2p4mq)C0(0,p2,p2,0,0,mq2)+2p2iπ2(2−D)CFgs2δCol1Col2γ⋅pA0(mq2)
The UV divergence of the amplitude can be obtained via PaVeUVPart.
Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint:
If you need the full result for the amplitude, use PaXEvaluate from
FeynHelpers.
ampDiv[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
SelectNotFree2[#, Epsilon] & // Simplify
16π2εiCFgs2δCol1Col2(ξgγ⋅p−(ξg+3)mq)
The self-energy amplitude is usually defined as -i Sigma(p^2)
−16π2εCFgs2δCol1Col2(ξgγ⋅p−(ξg+3)mq)
sigmaFeynmanGauge[0] = sigma[0] /. GaugeXi[g] -> 1
−16π2εCFgs2δCol1Col2(γ⋅p−4mq)
Check the final results
Notice that the result in the book must be multiplied by (-1) due to
the way how self-energy is defined there (c.f. Eq. 2.4.4 and Eq.
2.4.6).
knownResult = -(-SMP["g_s"]^2/(4 Pi)^2 CF*(3 + GaugeXi[g]) (1/Epsilon)*SMP["m_q"] +
GSD[p]*SMP["g_s"]^2/(4 Pi)^2*CF*GaugeXi[g]*(1/Epsilon)) SDF[Col1, Col2];
FCCompareResults[sigma[0], knownResult,
Text -> {"\tCompare to Muto, Foundations of QCD, Eq 10.41:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Muto, Foundations of QCD, Eq 10.41:CORRECT.
True
\tCPU Time used: 23.468 s.