= "Q -> Q, QCD, only UV divergences, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
= True; $KeepLogDivergentScalelessIntegrals
= InsertFields[CreateTopologies[1, 1 -> 1,
diags -> Tadpoles], {F[3, {1}]} ->
ExcludeTopologies {F[3, {1}]}, InsertionLevel -> {Particles}, Model -> "SMQCD",
-> {S[_], V[1 | 2 | 3]}];
ExcludeParticles
[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {256, 256}]; SheetHeader
The 1/(2Pi)^D prefactor is implicit. We keep the full gauge dependence.
[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True,
amp-> 1, GaugeRules -> {}], IncomingMomenta -> {p},
PreFactor -> {p}, LoopMomenta -> {q}, UndoChiralSplittings -> True,
OutgoingMomenta -> D, List -> False, SMP -> True, DropSumOver -> True,
ChangeDimension -> True, FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}] Contract
-\frac{g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu3}} T_{\text{Col2}\;\text{Col3}}^{\text{Glu3}} \gamma ^{\text{Lor2}}.\left(m_q+\gamma \cdot q\right).\gamma ^{\text{Lor2}}}{\left(q^2-m_q^2\right).(q-p)^2}-\frac{\left(1-\xi _g\right) g_s^2 T_{\text{Col3}\;\text{Col1}}^{\text{Glu3}} T_{\text{Col2}\;\text{Col3}}^{\text{Glu3}} (\gamma \cdot (p-q)).\left(m_q+\gamma \cdot q\right).(\gamma \cdot (q-p))}{\left(q^2-m_q^2\right).(q-p)^4}
[1] = amp[0] // SUNSimplify // TID[#, q, ToPaVe -> True] & amp
\frac{1}{2 p^2}i \pi ^2 C_F g_s^2 \delta _{\text{Col1}\;\text{Col2}} \;\text{B}_0\left(p^2,0,m_q^2\right) \left(-D \left(p^2-m_q^2\right) \gamma \cdot p-2 D p^2 m_q+2 D p^2 \gamma \cdot p+\xi _g m_q^2 \gamma \cdot p-2 \xi _g m_q (\gamma \cdot p).(\gamma \cdot p)+p^2 \xi _g \gamma \cdot p+m_q^2 (-(\gamma \cdot p))+2 m_q (\gamma \cdot p).(\gamma \cdot p)+2 \left(p^2-m_q^2\right) \gamma \cdot p-5 p^2 \gamma \cdot p\right)-\frac{i \pi ^2 C_F \left(1-\xi _g\right) g_s^2 \;\text{B}_0(0,0,0) \delta _{\text{Col1}\;\text{Col2}} \left(m_q^2 (-(\gamma \cdot p))+2 m_q (\gamma \cdot p).(\gamma \cdot p)-2 p^2 m_q+p^2 \gamma \cdot p\right)}{2 p^2}+\frac{i \pi ^2 C_F \left(1-\xi _g\right) g_s^2 \delta _{\text{Col1}\;\text{Col2}} \left(-m_q^2 \left(p^2-m_q^2\right) \gamma \cdot p-4 p^2 m_q (\gamma \cdot p).(\gamma \cdot p)+2 m_q \left(p^2-m_q^2\right) (\gamma \cdot p).(\gamma \cdot p)+p^2 \left(p^2-m_q^2\right) \gamma \cdot p+2 p^2 m_q^3+2 p^4 m_q\right) \;\text{C}_0\left(0,p^2,p^2,0,0,m_q^2\right)}{2 p^2}+\frac{i \pi ^2 (2-D) C_F g_s^2 \delta _{\text{Col1}\;\text{Col2}} \gamma \cdot p \;\text{A}_0\left(m_q^2\right)}{2 p^2}
The UV divergence of the amplitude can be obtained via PaVeUVPart. Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint: If you need the full result for the amplitude, use PaXEvaluate from FeynHelpers.
[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
ampDiv[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCReplaceD[#, Epsilon] & // Simplify SelectNotFree2
\frac{i C_F g_s^2 \delta _{\text{Col1}\;\text{Col2}} \left(\xi _g \gamma \cdot p-\left(\xi _g+3\right) m_q\right)}{16 \pi ^2 \varepsilon }
The self-energy amplitude is usually defined as -i Sigma(p^2)
[0] = I ampDiv[0] sigma
-\frac{C_F g_s^2 \delta _{\text{Col1}\;\text{Col2}} \left(\xi _g \gamma \cdot p-\left(\xi _g+3\right) m_q\right)}{16 \pi ^2 \varepsilon }
[0] = sigma[0] /. GaugeXi[g] -> 1 sigmaFeynmanGauge
-\frac{C_F g_s^2 \delta _{\text{Col1}\;\text{Col2}} \left(\gamma \cdot p-4 m_q\right)}{16 \pi ^2 \varepsilon }
Notice that the result in the book must be multiplied by (-1) due to the way how self-energy is defined there (c.f. Eq. 2.4.4 and Eq. 2.4.6).
= -(-SMP["g_s"]^2/(4 Pi)^2 CF*(3 + GaugeXi[g]) (1/Epsilon)*SMP["m_q"] +
knownResult [p]*SMP["g_s"]^2/(4 Pi)^2*CF*GaugeXi[g]*(1/Epsilon)) SDF[Col1, Col2];
GSD[sigma[0], knownResult,
FCCompareResultsText -> {"\tCompare to Muto, Foundations of QCD, Eq 10.41:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tCompare to Muto, Foundations of QCD, Eq 10.41:} \;\text{CORRECT.}
\text{True}
\text{$\backslash $tCPU Time used: }23.468\text{ s.}