Load
FeynCalc and the necessary add-ons or other packages
This example uses a custom QCD model created with FeynRules. Please
evaluate the file FeynCalc/Examples/FeynRules/QCD/GenerateModelQCD.m
before running it for the first time.
description = "Gl - Gl Gl, QCD, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
We keep scaleless B0 functions, since otherwise the UV part would not
come out right.
$KeepLogDivergentScalelessIntegrals = True;
FAPatch[PatchModelsOnly -> True];
(*Successfully patched FeynArts.*)
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
MakeBoxes[rho, TraditionalForm] := "\[Rho]";
template = insertFields[createTopologies[1, 1 -> 2,
ExcludeTopologies -> {Tadpoles, WFCorrections,
WFCorrectionCTs, SelfEnergies}], {V[5]} ->
{V[5], V[5]}, InsertionLevel -> {Particles},
Model -> FileNameJoin[{"QCD", "QCD"}],
GenericModel -> FileNameJoin[{"QCD", "QCD"}],
ExcludeParticles -> {F[3 | 4, {2 | 3}], F[4, {1}]}];
diags = template /. createTopologies -> CreateTopologies /.
insertFields -> InsertFields;
diagsCT = template /. createTopologies -> CreateCTTopologies /.
insertFields -> InsertFields;
Paint[diags, ColumnsXRows -> {3, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];



Paint[diagsCT, ColumnsXRows -> {3, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];

Obtain the amplitudes
The 1/(2Pi)^D prefactor is implicit. We keep the full gauge
dependence. To simplify comparisons to the literature, we make all
momenta incoming.
Quark contribution. Notice that we multiply the amplitude by Nf to
account for the number of quark flavours in the loop.
amp1[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {1, 2}],
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, DropSumOver -> True,
SUNIndexNames -> {a, b, c}, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True, Prefactor -> Nf,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"], p2 -> -p2, p3 -> -p3}]
(l2−mq2).((l+p2)2−mq2).((l+p2+p3)2−mq2)iNftr((γ⋅(l+p2+p3)+mq).(−iγρgsTCol5Col6c).(γ⋅(l+p2)+mq).(−iγνgsTCol6Col4b).(γ⋅l+mq).(−iγμgsTCol4Col5a))+(l2−mq2).((l+p2)2−mq2).((l+p2+p3)2−mq2)iNftr((γ⋅(l+p2+p3)+mq).(iγρgsTCol6Col5c).(γ⋅(l+p2)+mq).(iγνgsTCol4Col6b).(γ⋅l+mq).(iγμgsTCol5Col4a))
Ghost contribution
amp2[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {3, 4}],
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, SUNIndexNames -> {a, b, c},
DropSumOver -> True, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"], p2 -> -p2, p3 -> -p3}]
l2.(l+p2)2.(l+p2+p3)2igs3lν(l+p2)ρfaGlu4Glu5fbGlu4Glu6fcGlu5Glu6(l+p2+p3)μ+l2.(l+p2)2.(l+p2+p3)2igs3lμ(−l−p2)νfaGlu4Glu5fbGlu4Glu6fcGlu5Glu6(−l−p2−p3)ρ
Gluon contribution
amp3[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {5, 6, 7, 8}],
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, SUNIndexNames -> {a, b, c},
DropSumOver -> True, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"], p2 -> -p2, p3 -> -p3}];
Counter-term
amp4[0] = FCFAConvert[CreateFeynAmp[diagsCT,
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, SUNIndexNames -> {a, b, c},
DropSumOver -> True, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"], p2 -> -p2, p3 -> -p3,
ZA -> SMP["Z_A"], Zg -> SMP["Z_g"]}]
gsp1ν(ZA3/2Zg−1)gμρfabc−gsp1ρ(ZA3/2Zg−1)gμνfabc+gs(−p2μ)(ZA3/2Zg−1)gνρfabc+gsp2ρ(ZA3/2Zg−1)gμνfabc+gsp3μ(ZA3/2Zg−1)gνρfabc−gsp3ν(ZA3/2Zg−1)gμρfabc
Calculate the amplitudes
Quark contribution
AbsoluteTiming[amp1[1] = TID[FCE[amp1[0]] /. {p2 + p3 -> -p1, -p2 - p3 -> p1}, l,
UsePaVeBasis -> True, ToPaVe -> True];]
{1.59185,Null}
amp1Div[0] = amp1[1] // PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D, FCLoopExtract -> False] &;
amp1Div[1] = amp1Div[0] // SUNSimplify[#, Explicit -> True] & // ReplaceAll[#,
SUNTrace[x__] :> SUNTrace[x, Explicit -> True]] & //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & //
Normal // FCHideEpsilon // SelectNotFree2[#, SMP["Delta"]] & //FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
−24π2ΔNfgs3gνρ(p1+2p2)μfabc+24π2ΔNfgs3gμρ(2p1+p2)νfabc−24π2ΔNfgs3gμν(p1−p2)ρfabc
In the calculation p3 was eliminated via the 4-momentum conservation
p1+p2+p3=0. Now we need to reintroduce it
amp1Div[2] = amp1Div[1] /. {2 p1 + p2 -> p1 - p3, p1 + 2 p2 -> p2 - p3}
−24π2ΔNfgs3gμν(p1−p2)ρfabc+24π2ΔNfgs3gμρ(p1−p3)νfabc−24π2ΔNfgs3gνρ(p2−p3)μfabc
Ghost contribution
AbsoluteTiming[amp2[1] = TID[FCE[amp2[0]] /. {p2 + p3 -> -p1, -p2 - p3 -> p1}, l,
UsePaVeBasis -> True, ToPaVe -> True];]
{0.432995,Null}
amp2Div[0] = amp2[1] // PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D, FCLoopExtract -> False] &;
amp2Div[1] = amp2Div[0] // SUNSimplify[#, Explicit -> True] & // ReplaceAll[#,
SUNTrace[x__] :> SUNTrace[x, Explicit -> True]] & //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & //
Normal // FCHideEpsilon // SelectNotFree2[#, SMP["Delta"]] & //FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
384π2ΔCAgs3gνρ(p1+2p2)μfabc−384π2ΔCAgs3gμρ(2p1+p2)νfabc+384π2ΔCAgs3gμν(p1−p2)ρfabc
In the calculation p3 was eliminated via the 4-momentum conservation
p1+p2+p3=0. Now we need to reintroduce it
amp2Div[2] = amp2Div[1] /. {2 p1 + p2 -> p1 - p3, p1 + 2 p2 -> p2 - p3}
384π2ΔCAgs3gμν(p1−p2)ρfabc−384π2ΔCAgs3gμρ(p1−p3)νfabc+384π2ΔCAgs3gνρ(p2−p3)μfabc
Gluon contribution
This calculation requires about 70 seconds on a modern laptop
AbsoluteTiming[amp3[1] = TID[FCE[amp3[0]] /. {p2 + p3 -> -p1, -p2 - p3 -> p1}, l,
UsePaVeBasis -> True, ExpandScalarProduct -> False, ToPaVe -> True];]
{56.6716,Null}
amp3Div[0] = amp3[1] // PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D, FCLoopExtract -> False] &;
amp3Div[1] = amp3Div[0] // SUNSimplify // FCReplaceD[#, D -> 4 - 2 Epsilon] & //
Series[#, {Epsilon, 0, 0}] & // Normal // FCHideEpsilon //
SelectNotFree2[#, SMP["Delta"]] & // FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
−128π2ΔCAgs3gνρfabc(6ξGp1μ−3ξG(p1+p2+p3)μ+12ξGp2μ+(4p1−7p2+15p3)μ)+128π2ΔCAgs3gμρfabc(13ξGp1ν−4ξG(p1+p2)ν+7ξGp2ν−3ξGp3ν+(−7p1+4p2+15p3)ν)−128π2ΔCA(6ξG−11)gs3gμν(p1−p2)ρfabc
amp3Div[2] = (((amp3Div[1] /. {p3 -> -p1 - p2}) // ExpandScalarProduct // FCE //
Collect2[#, MTD, GaugeXi, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &) /.
2 p1 + p2 -> p1 - p3 /. p1 + 2 p2 -> p2 - p3 /. 22 p1 + 11 p2 -> 11 p1 - 11 p3 /.
-22 p2 - 11 p1 -> -11 p2 + 11 p3) // ExpandScalarProduct // FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
−128π2ΔCA(6ξG−11)gs3gμν(p1−p2)ρfabc+128π2ΔCA(6ξG−11)gs3gμρ(p1−p3)νfabc−128π2ΔCA(6ξG−11)gs3gνρ(p2−p3)μfabc
Counter-term
amp4[1] = amp4[0] // ReplaceAll[#, {SMP["Z_A"] -> 1 + alpha SMP["d_A"],
SMP["Z_g"] -> 1 + alpha SMP["d_g"]}] & // Series[#, {alpha, 0, 1}] & //
Normal // ReplaceAll[#, alpha -> 1] & // ExpandScalarProduct //FCE //
Collect2[#, MTD, GaugeXi, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
−21gs(3δA+2δg)gμν(p1−p2)ρfabc−21gs(3δA+2δg)gμρ(p3−p1)νfabc−21gs(3δA+2δg)gνρ(p2−p3)μfabc
Check the cancellation of the UV divergences in the MSbar scheme. The
renormalization constants are obtained from another example calculation,
“Renormalization.m”
renormalizationConstants = {
SMP["d_A"] -> SMP["alpha_s"]/(4 Pi) SMP["Delta"] (1/2 CA (13/3 - GaugeXi["G"]) - 2/3 Nf),
SMP["d_g"] -> ((-11*CA*SMP["alpha_s"])/(24 Pi) SMP["Delta"] + (Nf*SMP["alpha_s"])/(12*Pi) SMP["Delta"])
} /. SMP["alpha_s"] -> SMP["g_s"]^2/(4 Pi);
uvDiv[0] = ExpandScalarProduct[amp1Div[2] + amp2Div[2] + amp3Div[2] + amp4[1]] //FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &
−192π2gsgμν(p1−p2)ρfabc(9ΔCAξGgs2−17ΔCAgs2+288π2δA+8ΔNfgs2+192π2δg)+192π2gsgμρ(p1−p3)νfabc(9ΔCAξGgs2−17ΔCAgs2+288π2δA+8ΔNfgs2+192π2δg)−192π2gsgνρ(p2−p3)μfabc(9ΔCAξGgs2−17ΔCAgs2+288π2δA+8ΔNfgs2+192π2δg)
uvDiv[1] = (uvDiv[0] /. renormalizationConstants) // Simplify
0
FCCompareResults[uvDiv[1], 0,
Text -> {"\tThe UV divergence of the 3-gluon vertex at 1-loop is cancelled by the counter-term :",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
\tThe UV divergence of the 3-gluon vertex at 1-loop is cancelled by the counter-term :CORRECT.
Check the final results
VertexLorentzStruct[{p_, q_, k_}, {mu_, nu_, si_}, {a_, b_, c_}] :=
-I SUNF[a, b, c] (MTD[mu, nu] FVD[p - q, si] + MTD[nu, si] FVD[q - k, mu] + MTD[si, mu] FVD[k - p, nu]);
knownResult = {
(I SMP["g_s"]) Nf SMP["g_s"]^2/(4 Pi)^2*(-2/3) SMP["Delta"]*
VertexLorentzStruct[{p1, p2, p3}, {mu, nu, rho}, {a, b, c}],
(I SMP["g_s"]) SMP["g_s"]^2/(4 Pi)^2 CA/8 (1/3) SMP["Delta"]*
VertexLorentzStruct[{p1, p2, p3}, {mu, nu, rho}, {a, b, c}],
(I SMP["g_s"]) SMP["g_s"]^2/(4 Pi)^2 CA/8 SMP["Delta"]*(
-4 - 9 GaugeXi["G"] + 15 + 3 GaugeXi["G"])*
VertexLorentzStruct[{p1, p2, p3}, {mu, nu, rho}, {a, b, c}]
} // FCI;
FCCompareResults[{amp1Div[2], amp2Div[2], amp3Div[2]}, knownResult,
Text -> {"\tCompare to Pascual and Tarrach, QCD: Renormalization for the Practitioner, Eq III.46:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Pascual and Tarrach, QCD: Renormalization for the Practitioner, Eq III.46:CORRECT.
\tCPU Time used: 92.55 s.