Load
FeynCalc and the necessary add-ons or other packages
description = "Gl -> Gl, YM+BGF, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
diags = InsertFields[CreateTopologies[1, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
{V[50, {a}]} -> {V[50, {b}]}, InsertionLevel -> {Classes},
Model -> FileNameJoin[{"QCDBGF", "QCDBGF"}],
GenericModel -> FileNameJoin[{"QCDBGF", "QCDBGF"}],
ExcludeParticles -> {F[_]}];
Paint[diags, ColumnsXRows -> {2, 2}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 512}];

Obtain corresponding
amplitudes
The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, GaugeRules -> {},
PreFactor -> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {l},
LorentzIndexNames -> {mu, nu}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> True, SMP -> True, DropSumOver -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"],
GaugeXi[V[5, {_}]] :> GaugeXi[G]}];
amp[1] = DiracSimplify /@ amp[0];
amp[2] = SUNSimplify[TID[#, l, ToPaVe -> True]] & /@ amp[1];
Discard all the finite pieces of the 1-loop amplitude.
ampDiv[0] = PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D] & /@ amp[2]
{0,0,(D−4)(D−1)i21−Dπ2−DCAgs2δab(pμpν−p2gμν),(D−4)(D−1)i2−D−1π2−DCAgs2(ξG2+6ξG+33)δab(pμpν−p2gμν)}
ampDiv[1] = FCReplaceD[ampDiv[0], D -> 4 - 2 Epsilon] //
Series[#, {Epsilon, 0, -1}] & // Normal // Simplify
{0,0,−48π2εiCAgs2δab(pμpν−p2gμν),−192π2εiCAgs2(ξG2+6ξG+33)δab(pμpν−p2gμν)}
Check the final results
knownResult = {
0,
0,
I CA SMP["g_s"]^2 SUNDelta[a, b]/(4 Pi)^2 (1/(3 Epsilon))*
(MTD[mu, nu] SPD[p] - FVD[p, mu] FVD[p, nu]),
I CA SMP["g_s"]^2 SUNDelta[a, b]/(4 Pi)^2 (10/(3 Epsilon))*
(MTD[mu, nu] SPD[p] - FVD[p, mu] FVD[p, nu])
} // FCI;
FCCompareResults[ampDiv[1] /. GaugeXi[G] -> 1, knownResult,
Text -> {"\tCompare to Abbott, Nucl. Phys. B 185 (1981) 189-203, Eqs 5.11-5.12:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Abbott, Nucl. Phys. B 185 (1981) 189-203, Eqs 5.11-5.12:CORRECT.
\tCPU Time used: 27.441 s.