description = "Gl -> Gl, YM+BGF, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
LaunchKernels[4];
$LoadAddOns = {"FeynArts", "FeynHelpers"};
<< FeynCalc`
$FAVerbose = 0;
$ParallelizeFeynCalc = True;
FCCheckVersion[10, 2, 0];
If[ToExpression[StringSplit[$FeynHelpersVersion, "."]][[1]] < 2,
Print["You need at least FeynHelpers 2.0 to run this example."];
Abort[];
]\text{FeynCalc }\;\text{10.2.0 (dev version, 2025-12-22 21:09:03 +01:00, fcd53f9b). For help, use the }\underline{\text{online} \;\text{documentation},}\;\text{ visit the }\underline{\text{forum}}\;\text{ and have a look at the supplied }\underline{\text{examples}.}\;\text{ The PDF-version of the manual can be downloaded }\underline{\text{here}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.12 (27 Mar 2025) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
\text{FeynHelpers }\;\text{2.0.0 (2025-12-22 19:07:44 +01:00, c92fb9f5). For help, use the }\underline{\text{online} \;\text{documentation},}\;\text{ visit the }\underline{\text{forum}}\;\text{ and have a look at the supplied }\underline{\text{examples}.}\;\text{The PDF-version of the manual can be downloaded }\underline{\text{here}.}
\text{ If you use FeynHelpers in your research, please evaluate FeynHelpersHowToCite[] to learn how to cite this work.}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
$KeepLogDivergentScalelessIntegrals = True;FAPatch[PatchModelsOnly -> True];
(*Successfully patched FeynArts.*)Nicer typesetting
FCAttachTypesettingRule[mu, "\[Mu]"];
FCAttachTypesettingRule[nu, "\[Nu]"];diags = InsertFields[CreateTopologies[1, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
{V[50, {a}]} -> {V[50, {b}]}, InsertionLevel -> {Classes},
Model -> FileNameJoin[{"QCDBGF", "QCDBGF"}],
GenericModel -> FileNameJoin[{"QCDBGF", "QCDBGF"}],
ExcludeParticles -> {F[_]}];
Paint[diags, ColumnsXRows -> {2, 2}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 512}];The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, GaugeRules -> {},
PreFactor -> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {l},
LorentzIndexNames -> {mu, nu}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> True, SMP -> True, DropSumOver -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"],
GaugeXi[V[5, {_}]] :> GaugeXi[G]}];amp[1] = DiracSimplify[#, FCParallelize -> True] & /@ amp[0];amp[2] = amp[1] // SUNSimplify[#, FCParallelize -> True] & //
TID[#, l, ToPaVe -> True, FCParallelize -> True] &;\text{TID}\;\text{::}\;\text{zerogram} :\text{ }"Warning! Following sets of external momenta are linearly dependent \!\(\*FormBox[\"\\\"{{-p, -p}}\\\"\", TraditionalForm]\). To avoid singularities due to zero Gram determinants, TID will automatically switch to the reduction in terms of Passarino-Veltman coefficient functions. If you want to have the reduction to scalar integrals, please find a set of linearly independent momenta using FCLoopFindTensorBasis and supply it to the function via the option TensorReductionBasisChange."
Discard all the finite pieces of the 1-loop amplitude.
ampDiv[0] = PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D] & /@ amp[2]\left\{0,0,\frac{i 2^{1-D} \pi ^{2-D} C_A g_s^2 \delta ^{ab} \left(p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right)}{(D-4) (D-1)},\frac{5 i (2 \pi )^{2-D} C_A g_s^2 \delta ^{ab} \left(p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right)}{(D-4) (D-1)}\right\}
ampDiv[1] = FCReplaceD[ampDiv[0], D -> 4 - 2 Epsilon] //
Series[#, {Epsilon, 0, -1}] & // Normal // Simplify\left\{0,0,-\frac{i C_A g_s^2 \delta ^{ab} \left(p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right)}{48 \pi ^2 \varepsilon },-\frac{5 i C_A g_s^2 \delta ^{ab} \left(p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right)}{24 \pi ^2 \varepsilon }\right\}
```mathematica knownResult = { 0, 0, I CA SMP[“g_s”]^2 SUNDelta[a, b]/(4 Pi)^2 (1/(3 Epsilon)) (MTD[mu, nu] SPD[p] - FVD[p, mu] FVD[p, nu]), I CA SMP[“g_s”]^2 SUNDelta[a, b]/(4 Pi)^2 (10/(3 Epsilon)) (MTD[mu, nu] SPD[p] - FVD[p, mu] FVD[p, nu]) } // FCI; FCCompareResults[ampDiv[1] /. GaugeXi[G] -> 1, knownResult, Text -> {“to Abbott, Nucl. Phys. B 185 (1981) 189-203, Eqs 5.11-5.12:”, “CORRECT.”, “WRONG!”}, Interrupt -> {Hold[Quit[1]], Automatic}]; Print[“Time used:”, Round[N[TimeUsed[], 4], 0.001], ” s.”];
```mathematica
\text{$\backslash $tCompare to Abbott, Nucl. Phys. B 185 (1981) 189-203, Eqs 5.11-5.12:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }27.546\text{ s.}