= "Gl -> Gl, QCD, only UV divergences, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
= True; $KeepLogDivergentScalelessIntegrals
Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
= InsertFields[CreateTopologies[1, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
diags {V[5]} -> {V[5]}, InsertionLevel -> {Particles}, Model -> "SMQCD",
-> {S[_], V[2 | 3], F[4], F[3, {2 | 3}]}];
ExcludeParticles
[diags, ColumnsXRows -> {2, 2}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 512}]; SheetHeader
The 1/(2Pi)^D prefactor is implicit.
[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, GaugeRules -> {},
amp-> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q},
PreFactor -> {mu, nu}, UndoChiralSplittings -> True,
LorentzIndexNames -> D, List -> True, SMP -> True, DropSumOver -> True,
ChangeDimension -> True, FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}] Contract
\left\{\frac{g^{\mu \nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12977}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12977}}}{2 q^2}+\frac{\left(\xi _g-1\right) q^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12977}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12977}}}{2 \left(q^2\right)^2}-\frac{D g^{\mu \nu } g_s^2 \left(f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12978}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12978}}+f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12979}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12979}}\right)}{2 q^2}-\frac{\left(\xi _g-1\right) g^{\mu \nu } q^2 g_s^2 \left(f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12978}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12978}}+f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12979}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12979}}\right)}{2 \left(q^2\right)^2}+\frac{g^{\mu \nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12981}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12981}}}{2 q^2}+\frac{\left(\xi _g-1\right) q^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{\$AL\$12981}} f^{\text{Glu2}\;\text{Glu3}\;\text{\$AL\$12981}}}{2 \left(q^2\right)^2},\frac{\text{tr}\left(\left(m_q-\gamma \cdot q\right).\left(-i \gamma ^{\nu } g_s T_{\text{Col3}\;\text{Col4}}^{\text{Glu2}}\right).\left(\gamma \cdot (p-q)+m_q\right).\left(-i \gamma ^{\mu } g_s T_{\text{Col4}\;\text{Col3}}^{\text{Glu1}}\right)\right)}{\left(q^2-m_q^2\right).\left((q-p)^2-m_q^2\right)},-\frac{(q-p)^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2},-\frac{\left(1-\xi _g\right){}^2 p^{\mu } p^{\nu } (p\cdot q)^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 p^{\mu } q^{\nu } (p\cdot q)^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^4}+\frac{D p^{\mu } p^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}-\frac{3 p^{\mu } p^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}-\frac{D q^{\mu } p^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}+\frac{3 q^{\mu } p^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}-\frac{D p^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}+\frac{3 p^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}+\frac{2 D q^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}-\frac{3 q^{\mu } q^{\nu } g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}+\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } p^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } p^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } p^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) q^{\mu } p^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } p^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^2}+\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 q^{\mu } p^{\nu } p^2 (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 q^{\mu } q^{\nu } p^2 (p\cdot q) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^4}-\frac{g^{\mu \nu } \left(p\cdot q-2 p^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{q^2.(q-p)^2}+\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } \left(p\cdot q-2 p^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } \left(p\cdot q-2 p^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{g^{\mu \nu } \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}+\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) g^{\mu \nu } p^2 \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 q^{\mu } q^{\nu } p^2 \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 p^{\mu } q^{\nu } (p\cdot q) \left(p^2+p\cdot q\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) q^{\mu } p^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 q^{\mu } p^{\nu } p^2 q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 q^{\mu } q^{\nu } p^2 q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 p^{\mu } p^{\nu } (p\cdot q) q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 p^{\mu } q^{\nu } (p\cdot q) q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right) g^{\mu \nu } \left(p^2+p\cdot q\right) q^2 g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{g^{\mu \nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } p^{\nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right) q^{\mu } p^{\nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}+\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}+\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 q^{\mu } p^{\nu } p^2 \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 q^{\mu } q^{\nu } p^2 \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right) g^{\mu \nu } (p\cdot q) \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{\left(q^2\right)^2.(q-p)^2}-\frac{\left(1-\xi _g\right){}^2 p^{\mu } p^{\nu } (p\cdot q) \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 p^{\mu } q^{\nu } (p\cdot q) \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right) g^{\mu \nu } q^2 \left(q^2-2 (p\cdot q)\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}+\frac{g^{\mu \nu } \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^2}-\frac{\left(1-\xi _g\right) p^{\mu } p^{\nu } \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right) p^{\mu } q^{\nu } \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}+\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^2}+\frac{\left(1-\xi _g\right) q^{\mu } q^{\nu } \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}+\frac{\left(1-\xi _g\right) g^{\mu \nu } p^2 \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}-\frac{\left(1-\xi _g\right){}^2 q^{\mu } q^{\nu } p^2 \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}+\frac{\left(1-\xi _g\right){}^2 p^{\mu } q^{\nu } (p\cdot q) \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 \left(q^2\right)^2.(q-p)^4}-\frac{\left(1-\xi _g\right) g^{\mu \nu } q^2 \left(p\cdot q+q^2\right) g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}}}{2 q^2.(q-p)^4}\right\}
This contribution is zero in dimensional regularization, because the loop integrals have no scale (and they are not log divergent)
[0] = TID[amp[0][[1]], q, ToPaVe -> True] amp1
0
[amp1[0], 0,
FCCompareResultsText -> {"\tThe gluon tadpole vanishes:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
\text{$\backslash $tThe gluon tadpole vanishes:} \;\text{CORRECT.}
[0] = amp[0][[2]] // SUNSimplify // TID[#, q, ToPaVe -> True] & amp2
\frac{i \pi ^2 g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{B}_0\left(p^2,m_q^2,m_q^2\right) \left(-\left((1-D) p^4 g^{\mu \nu }\right)+2 (1-D) p^2 p^{\mu } p^{\nu }+D p^2 p^{\mu } p^{\nu }+4 p^2 m_q^2 g^{\mu \nu }-p^4 g^{\mu \nu }-4 m_q^2 p^{\mu } p^{\nu }\right)}{(1-D) p^2}-\frac{2 i \pi ^2 g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{A}_0\left(m_q^2\right) \left(-(1-D) p^2 g^{\mu \nu }-D p^{\mu } p^{\nu }-p^2 g^{\mu \nu }+2 p^{\mu } p^{\nu }\right)}{(1-D) p^2}
The contribution of the quark loop alone is gauge invariant.
= Contract[FVD[p, mu] FVD[p, nu] amp2[0]] // Factor
tmp [tmp, 0,
FCCompareResultsText -> {"\tThe quark loop contribution is gauge invariant:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
0
\text{$\backslash $tThe quark loop contribution is gauge invariant:} \;\text{CORRECT.}
[0] = amp[0][[3]] // SUNSimplify // TID[#, q, ToPaVe -> True] & amp3
\frac{i \pi ^2 C_A g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{B}_0\left(p^2,0,0\right) \left(2 (1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right)}{4 (1-D)}
The contribution of the gluon loop alone is not gauge invariant.
= Contract[FVD[p, mu] FVD[p, nu] amp3[0]] // Factor tmp1
\frac{1}{4} i \pi ^2 p^4 C_A g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{B}_0\left(p^2,0,0\right)
[0] = amp[0][[4]] // SUNSimplify // TID[#, q, ToPaVe -> True] & amp4
-\frac{i C_A \pi ^2 \;\text{D}_0\left(0,p^2,0,p^2,p^2,p^2,0,0,0,0\right) \left(1-\xi _g\right){}^2 p^4 \left((1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{8 (1-D)}-\frac{i C_A \pi ^2 \;\text{B}_0(0,0,0) \left(1-\xi _g\right) \left(7 (1-D) p^{\mu } p^{\nu }+3 D p^{\mu } p^{\nu }-(1-D) \xi _g p^{\mu } p^{\nu }-D \xi _g p^{\mu } p^{\nu }-4 (1-D) g^{\mu \nu } p^2+\xi _g g^{\mu \nu } p^2-3 g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{4 (1-D)}+\frac{i C_A \pi ^2 \;\text{C}_0\left(0,p^2,p^2,0,0,0\right) \left(1-\xi _g\right) p^2 \left(3 (1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-\xi _g p^{\mu } p^{\nu }+p^{\mu } p^{\nu }-2 (1-D) g^{\mu \nu } p^2+\xi _g g^{\mu \nu } p^2-2 g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{2 (1-D)}-\frac{1}{4 (1-D)}i C_A \pi ^2 \;\text{B}_0\left(p^2,0,0\right) \left(2 p^{\mu } p^{\nu } D^2-\xi _g^2 p^{\mu } p^{\nu } D+2 (1-D) p^{\mu } p^{\nu } D+6 \xi _g p^{\mu } p^{\nu } D-8 p^{\mu } p^{\nu } D-2 g^{\mu \nu } p^2 D-(1-D) \xi _g^2 p^{\mu } p^{\nu }+(1-D) p^{\mu } p^{\nu }+6 (1-D) \xi _g p^{\mu } p^{\nu }-8 \xi _g p^{\mu } p^{\nu }+8 p^{\mu } p^{\nu }+\xi _g^2 g^{\mu \nu } p^2-8 (1-D) g^{\mu \nu } p^2+2 \xi _g g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2
The contribution of the gluon loop alone is not gauge invariant. Notice, however, that the sum of the ghost and gluon contributions is gauge invariant!
= Contract[FVD[p, mu] FVD[p, nu] amp4[0]] // Factor tmp2
-\frac{1}{4} i \pi ^2 p^4 C_A g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{B}_0\left(p^2,0,0\right)
[tmp1 + tmp2, 0,
FCCompareResultsText -> {"\tThe sum of the ghost and gluon loop contributions is gauge invariant:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
\text{$\backslash $tThe sum of the ghost and gluon loop contributions is gauge invariant:} \;\text{CORRECT.}
When adding all the contributions together, we multiply the quark contribution by N_f to account for the 6 quark flavors that actually run in that loop. We ignore the fact that different flavors have different masses, since the divergent piece of the gluon self-energy will not depend on the quark mass.
[1] = Nf amp2[0] + amp3[0] + amp4[0] amp
-\frac{i C_A \pi ^2 \;\text{D}_0\left(0,p^2,0,p^2,p^2,p^2,0,0,0,0\right) \left(1-\xi _g\right){}^2 p^4 \left((1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{8 (1-D)}+\frac{i C_A \pi ^2 \;\text{B}_0\left(p^2,0,0\right) \left(2 (1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{4 (1-D)}-\frac{i C_A \pi ^2 \;\text{B}_0(0,0,0) \left(1-\xi _g\right) \left(7 (1-D) p^{\mu } p^{\nu }+3 D p^{\mu } p^{\nu }-(1-D) \xi _g p^{\mu } p^{\nu }-D \xi _g p^{\mu } p^{\nu }-4 (1-D) g^{\mu \nu } p^2+\xi _g g^{\mu \nu } p^2-3 g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{4 (1-D)}+\frac{i C_A \pi ^2 \;\text{C}_0\left(0,p^2,p^2,0,0,0\right) \left(1-\xi _g\right) p^2 \left(3 (1-D) p^{\mu } p^{\nu }+D p^{\mu } p^{\nu }-\xi _g p^{\mu } p^{\nu }+p^{\mu } p^{\nu }-2 (1-D) g^{\mu \nu } p^2+\xi _g g^{\mu \nu } p^2-2 g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2}{2 (1-D)}-\frac{1}{4 (1-D)}i C_A \pi ^2 \;\text{B}_0\left(p^2,0,0\right) \left(2 p^{\mu } p^{\nu } D^2-\xi _g^2 p^{\mu } p^{\nu } D+2 (1-D) p^{\mu } p^{\nu } D+6 \xi _g p^{\mu } p^{\nu } D-8 p^{\mu } p^{\nu } D-2 g^{\mu \nu } p^2 D-(1-D) \xi _g^2 p^{\mu } p^{\nu }+(1-D) p^{\mu } p^{\nu }+6 (1-D) \xi _g p^{\mu } p^{\nu }-8 \xi _g p^{\mu } p^{\nu }+8 p^{\mu } p^{\nu }+\xi _g^2 g^{\mu \nu } p^2-8 (1-D) g^{\mu \nu } p^2+2 \xi _g g^{\mu \nu } p^2\right) \delta ^{\text{Glu1}\;\text{Glu2}} g_s^2+N_f \left(\frac{i \pi ^2 \;\text{B}_0\left(p^2,m_q^2,m_q^2\right) g_s^2 \left(-\left((1-D) g^{\mu \nu } p^4\right)-g^{\mu \nu } p^4+4 g^{\mu \nu } m_q^2 p^2+2 (1-D) p^{\mu } p^{\nu } p^2+D p^{\mu } p^{\nu } p^2-4 p^{\mu } p^{\nu } m_q^2\right) \delta ^{\text{Glu1}\;\text{Glu2}}}{(1-D) p^2}-\frac{2 i \pi ^2 \;\text{A}_0\left(m_q^2\right) \left(-D p^{\mu } p^{\nu }+2 p^{\mu } p^{\nu }-(1-D) g^{\mu \nu } p^2-g^{\mu \nu } p^2\right) g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}}}{(1-D) p^2}\right)
The UV divergence of the amplitude can be obtained via PaVeUVPart. Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint: If you need the full result for the amplitude, use PaXEvaluate from FeynHelpers.
[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
ampDiv[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCReplaceD[#, Epsilon] & // Simplify SelectNotFree2
\frac{i g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \left(p^{\mu } p^{\nu }-p^2 g^{\mu \nu }\right) \left(3 C_A \xi _g-13 C_A+4 N_f\right)}{96 \pi ^2 \varepsilon }
The self-energy amplitude is usually defined as (p^2 g^{mu nu} - p^mu p^nu) i Pi(p^2)
pi[0] = FCI[ampDiv[0]/(I SUNDelta[SUNIndex[Glu1], SUNIndex[Glu2]]*
[p, p] MTD[mu, nu] - FVD[p, mu] FVD[p, nu]))] // Cancel (SPD
-\frac{g_s^2 \left(3 C_A \xi _g-13 C_A+4 N_f\right)}{96 \pi ^2 \varepsilon }
= -(SMP["g_s"]^2/(4 Pi)^2)*(4/3*(1/2)*Nf -
knownResult 1/2) CA (13/3 - GaugeXi[g]))*1/Epsilon;
([pi[0], knownResult,
FCCompareResultsText -> {"\tCompare to Muta, Foundations of QCD, Eqs 2.5.131-2.5.132:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tCompare to Muta, Foundations of QCD, Eqs 2.5.131-2.5.132:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }27.379\text{ s.}