This example uses a custom QCD model created with FeynRules. Please evaluate the file FeynCalc/Examples/FeynRules/QCD/GenerateModelQCD.m before running it for the first time.
description = "GhGl - Gh, QCD, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
$KeepLogDivergentScalelessIntegrals = True;FAPatch[PatchModelsOnly -> True];
(*Successfully patched FeynArts.*)Nicer typesetting
MakeBoxes[mu, TraditionalForm] := "\[Mu]";
MakeBoxes[nu, TraditionalForm] := "\[Nu]";
MakeBoxes[rho, TraditionalForm] := "\[Rho]";template = insertFields[createTopologies[1, 1 -> 2,
ExcludeTopologies -> {Tadpoles, WFCorrections,
WFCorrectionCTs, SelfEnergies}], {U[5]} ->
{V[5], U[5]}, InsertionLevel -> {Particles},
Model -> FileNameJoin[{"QCD", "QCD"}],
GenericModel -> FileNameJoin[{"QCD", "QCD"}]];diags = template /. createTopologies -> CreateTopologies /.
insertFields -> InsertFields;
diagsCT = template /. createTopologies -> CreateCTTopologies /.
insertFields -> InsertFields;Paint[diags, ColumnsXRows -> {2, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];Paint[diagsCT, ColumnsXRows -> {2, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];The 1/(2Pi)^D prefactor is implicit. We keep the full gauge dependence.
amp1[0] = FCFAConvert[CreateFeynAmp[DiagramExtract[diags, {1, 2}],
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, DropSumOver -> True,
SUNIndexNames -> {a, b, c}, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"]}]i g_s^2 \;\text{p3}^{\text{Lor5}} f^{a\text{Glu4}\;\text{Glu5}} f^{c\text{Glu5}\;\text{Glu6}} (l-\text{p2}-\text{p3})^{\nu } \left(g_s g^{\text{Lor4}\rho } (\text{p2}-l)^{\mu } f^{b\text{Glu4}\;\text{Glu6}}+g_s g^{\text{Lor4}\mu } (l-\text{p2})^{\rho } f^{b\text{Glu4}\;\text{Glu6}}+g_s l^{\text{Lor4}} g^{\mu \rho } f^{b\text{Glu4}\;\text{Glu6}}-g_s l^{\mu } g^{\text{Lor4}\rho } f^{b\text{Glu4}\;\text{Glu6}}+g_s \;\text{p2}^{\text{Lor4}} g^{\mu \rho } f^{b\text{Glu4}\;\text{Glu6}}-g_s \;\text{p2}^{\rho } g^{\text{Lor4}\mu } f^{b\text{Glu4}\;\text{Glu6}}\right) \left(\frac{\left(1-\xi _{\text{G}}\right) g^{\nu \rho } (\text{p2}-l)^{\text{Lor4}} (l-\text{p2})^{\text{Lor5}}}{l^2.(l-\text{p2})^4.(l-\text{p2}-\text{p3})^2}-\frac{\left(1-\xi _{\text{G}}\right) l^{\nu } l^{\rho } g^{\text{Lor4}\;\text{Lor5}}}{\left(l^2\right)^2.(l-\text{p2})^2.(l-\text{p2}-\text{p3})^2}+-\frac{\left(1-\xi _{\text{G}}\right){}^2 l^{\nu } l^{\rho } (\text{p2}-l)^{\text{Lor4}} (l-\text{p2})^{\text{Lor5}}}{\left(l^2\right)^2.(l-\text{p2})^4.(l-\text{p2}-\text{p3})^2}+\frac{g^{\text{Lor4}\;\text{Lor5}} g^{\nu \rho }}{l^2.(l-\text{p2})^2.(l-\text{p2}-\text{p3})^2}\right)-i g_s^3 l^{\nu } \;\text{p3}^{\rho } (\text{p2}-l)^{\mu } f^{a\text{Glu4}\;\text{Glu5}} f^{b\text{Glu4}\;\text{Glu6}} f^{c\text{Glu5}\;\text{Glu6}} \left(\frac{\left(1-\xi _{\text{G}}\right) (l-\text{p2}-\text{p3})^{\nu } (-l+\text{p2}+\text{p3})^{\rho }}{l^2.(l-\text{p2})^2.(l-\text{p2}-\text{p3})^4}+\frac{g^{\nu \rho }}{l^2.(l-\text{p2})^2.(l-\text{p2}-\text{p3})^2}\right)
Counter-term
amp2[0] = FCFAConvert[CreateFeynAmp[diagsCT,
Truncated -> True, GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1}, OutgoingMomenta -> {p2, p3},
LorentzIndexNames -> {mu, nu, rho}, SUNIndexNames -> {a, b, c},
DropSumOver -> True, LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {SMP["m_u"] -> SMP["m_q"],
ZA -> SMP["Z_A"], Zg -> SMP["Z_g"], Zu -> SMP["Z_u"]}]g_s \left(-\text{p3}^{\mu }\right) f^{abc} \left(\sqrt{Z_A} Z_g Z_u-1\right)
AbsoluteTiming[amp1[1] = TID[(FCE[amp1[0]] /. {-p2 - p3 -> -p1}), l,
UsePaVeBasis -> True, ToPaVe -> True];]\{5.11524,\text{Null}\}
amp1Div[0] = amp1[1] // PaVeUVPart[#, Prefactor -> 1/(2 Pi)^D] &;amp1Div[1] = amp1Div[0] // SUNSimplify[#, Explicit -> True] & // ReplaceAll[#,
SUNTrace[x__] :> SUNTrace[x, Explicit -> True]] & //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & //
Normal // FCHideEpsilon // SelectNotFree2[#, SMP["Delta"]] & //FCE //
Collect2[#, MTD, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &-\frac{\Delta C_A \xi _{\text{G}} g_s^3 \;\text{p3}^{\mu } f^{abc}}{32 \pi ^2}
amp2[1] = amp2[0] // ReplaceAll[#, {SMP["Z_A"] -> 1 + alpha SMP["d_A"],
SMP["Z_u"] -> 1 + alpha SMP["d_u"],
SMP["Z_g"] -> 1 + alpha SMP["d_g"]}] & // Series[#, {alpha, 0, 1}] & //
Normal // ReplaceAll[#, alpha -> 1] & // ExpandScalarProduct //FCE //
Collect2[#, MTD, GaugeXi, Factoring -> Function[x, MomentumCombine[Factor[x]]]] &-\frac{1}{2} g_s \;\text{p3}^{\mu } f^{abc} \left(\delta _A+2 \delta _g+2 \delta _u\right)
Check the cancellation of the UV divergences in the MSbar scheme. The renormalization constants are obtained from another example calculation, “Renormalization.m”
renormalizationConstants = {
SMP["d_A"] -> SMP["alpha_s"]/(4 Pi) SMP["Delta"] (1/2 CA (13/3 - GaugeXi["G"]) - 2/3 Nf),
SMP["d_g"] -> ((-11*CA*SMP["alpha_s"])/(24 Pi) SMP["Delta"] + (Nf*SMP["alpha_s"])/(12*Pi) SMP["Delta"]),
SMP["d_u"] -> SMP["alpha_s"]/(4 Pi) CA SMP["Delta"] (3 - GaugeXi["G"])/4
} /. SMP["alpha_s"] -> SMP["g_s"]^2/(4 Pi);uvDiv[0] = ExpandScalarProduct[amp1Div[1] + amp2[1]] // Simplify-\frac{g_s \;\text{p3}^{\mu } f^{abc} \left(\Delta C_A \xi _{\text{G}} g_s^2+16 \pi ^2 \delta _A+32 \pi ^2 \delta _g+32 \pi ^2 \delta _u\right)}{32 \pi ^2}
uvDiv[1] = (uvDiv[0] /. renormalizationConstants) // Simplify0
FCCompareResults[uvDiv[1], 0,
Text -> {"\tThe UV divergence of the ghost-gluon vertex at 1-loop is cancelled by the counter-term :",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];\text{$\backslash $tThe UV divergence of the ghost-gluon vertex at 1-loop is cancelled by the counter-term :} \;\text{CORRECT.}
knownResult =
-I (-I SMP["g_s"] FVD[p3, mu] SUNF[a, b, c] ( SMP["g_s"]^2/(4 Pi)^2 CA*
GaugeXi["G"]/2 SMP["Delta"]));
FCCompareResults[amp1Div[1], knownResult,
Text -> {"\tCompare to Muta, Foundations of QCD, Eq. 2.5.142:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];\text{$\backslash $tCompare to Muta, Foundations of QCD, Eq. 2.5.142:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }35.667\text{ s.}